cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093000 Least k such that Sum_{r=n+1..k} r >= n!.

Original entry on oeis.org

2, 3, 5, 8, 16, 38, 101, 284, 852, 2694, 8935, 30952, 111598, 417560, 1617204, 6468816, 26671611, 113158064, 493244565, 2205856753, 10108505545, 47413093714, 227385209453, 1113955476429, 5569777382146, 28400403557929
Offset: 1

Views

Author

Amarnath Murthy, Mar 29 2004

Keywords

Comments

Equivalently, least k such that the product of the first n positive integers is less than the sum of the integers from n+1 through k.
a(n) = floor(sqrt(2*n! + n^2)) for most values of n; the exceptions are 1,2,3,7,..., in which case a(n) = floor(sqrt(2*n! + n^2)) + 1.

Examples

			a(4) = 8 because 4! = 24 and 5+6+7+8 = 26 > 24, but 5+6+7 = 18.
a(5) = 16 because 5! = 120 and 6+7+8+...+15+16 = 121 > 120.
		

Crossrefs

Cf. A093001.

Programs

  • PARI
    { for(n=1,20, s=0; found=0; for(k=n+1,10000000, if( k*(k+1)-n*(n+1)>= 2*n!, print1(k,","); found=1; break; ); ); if(found==0, print(0); ); ); } \\ R. J. Mathar, Apr 21 2006

Formula

Least k such that {k(k+1)/2 - n(n+1)/2} >= n!.
a(n) = ceiling((-1 + sqrt(1 + 8n! + 4n^2 + 4n))/2) and ignoring the -1 outside the sqrt and the 1 inside gives the approximate formula in the comment. - Joshua Zucker, May 08 2006

Extensions

More terms from R. J. Mathar, Apr 21 2006
More terms from Joshua Zucker, May 08 2006
Name simplified by Jon E. Schoenfield, Jun 15 2019