cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093039 Sequence resulting from a sum of three repeated binomial(n+3,4) sequences.

Original entry on oeis.org

1, 2, 7, 11, 25, 35, 65, 85, 140, 175, 266, 322, 462, 546, 750, 870, 1155, 1320, 1705, 1925, 2431, 2717, 3367, 3731, 4550, 5005, 6020, 6580, 7820, 8500, 9996, 10812, 12597, 13566, 15675, 16815, 19285, 20615, 23485, 25025, 28336, 30107, 33902
Offset: 1

Views

Author

Alford Arnold, May 08 2004

Keywords

Comments

Euler transform of length 3 sequence [2,k,-1] with k=4 (cf. A028724 for k=3). - Georg Fischer, Nov 28 2020

Examples

			b(n) = 1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126,126
     + 0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70,126
     + 0,  0,  1,  1,  5,  5, 15, 15, 35, 35, 70, 70
     -----------------------------------------------
a(n) = 1,  2,  7, 11, 25, 35, 65, 85,140,175,266,322
		

Crossrefs

Cf. A001651(k=1), A001318(k=2), A028724(k=3).
Cf. repeated binomial coefficients: A008805(k=2), A058187(k=3), A189976(k=4).

Programs

  • Mathematica
    k := 4; nmax := 32; a := Flatten[Table[{Binomial[n,k], Binomial[n,k]},{n,k,nmax}]];
    a + Flatten[Join[{0}, Drop[a,-1]]] + Flatten[Join[{0,0}, Drop[a,-2]]] (* Georg Fischer, Nov 29 2020 *)

Formula

a(1) = b(1), a(2) = b(2), a(n) = b(n) + b(n-1) + b(n-2) for n > 2, where k = 4 and b(n) = binomial(floor((n+7)/2), k) = A189976(n-7).

Extensions

More terms from and edited by Georg Fischer, Nov 28 2020