cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093050 Exponent of 2 in (3^n-3)*2^(n-1).

This page as a plain text file.
%I A093050 #12 Sep 14 2024 06:50:09
%S A093050 0,0,3,2,6,4,7,6,11,8,11,10,14,12,15,14,20,16,19,18,22,20,23,22,27,24,
%T A093050 27,26,30,28,31,30,37,32,35,34,38,36,39,38,43,40,43,42,46,44,47,46,52,
%U A093050 48,51,50,54,52,55,54,59,56,59,58,62,60,63,62,70,64,67,66,70
%N A093050 Exponent of 2 in (3^n-3)*2^(n-1).
%F A093050 Recurrence: a(2n) = a(n) + [(n+1)/2] + 1, a(2n+1) = 2n.
%F A093050 G.f.: Sum_{k>=0} t^2(3+2t+2t^3-t^4)/[(1+t^2)(1-t^2)^2], t=x^2^k.
%F A093050 a(n) = A093051(n) - 1 = A090740(n) + n - 2, for n >= 1. - _Amiram Eldar_, Sep 14 2024
%o A093050 (PARI) a(n)=if(n<1,0,if(n%2==0,a(n/2)+2*floor((n+2)/4)+1,n-1))
%Y A093050 Cf. A090740, A093051, A093052.
%Y A093050 a(n) is the exponent of 2 in A016129(n-1), A024281(n), A024287(n), A066406(n)/2, A071952(n+3).
%K A093050 nonn
%O A093050 0,3
%A A093050 _Ralf Stephan_, Mar 16 2004