cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093154 Primes resulting from serial multiplication of even composites, plus 1.

This page as a plain text file.
%I A093154 #18 Sep 08 2022 08:45:13
%S A093154 5,193,23041,92897281,980995276801,23310331287699456001,
%T A093154 31888533201572855808001,13532215908553332190020108288000001,
%U A093154 8829205774994708066835865418197893120000001,945837910352576904120619801361499836578686566400000001
%N A093154 Primes resulting from serial multiplication of even composites, plus 1.
%C A093154 Primes of the form 2^n*(n+1)!+1.
%C A093154 a(12) = 2^118*119!+1, a(13) = 2^142*143!+1. I conjecture that a(13) is the last prime number of this form. - _Jorge Coveiro_, Apr 01 2004
%C A093154 Conjecture that a(13) is the last prime of this form is false:
%C A093154   a(14) = 2^2789*2780!+1 is prime
%C A093154   a(15) = 2^3142*3143!+1 is prime
%C A093154   a(16) = 2^3557*3558!+1 is prime
%C A093154   a(17) = 2^3686*3687!+1 is prime
%C A093154   a(18) = 2^4190*4191!+1 is prime
%C A093154   a(19) = 2^7328*7329!+1 is prime
%C A093154   See A248879. - _Robert Price_, Mar 10 2015
%F A093154 Starting with 4, multiply even composites until the product plus 1 equals a prime.
%e A093154 a(1) = 5 = 2*2!+1
%e A093154 a(2) = 193 = 2^3*4!+1
%e A093154 a(3) = 23041 = 2^5*6!+1
%e A093154 a(4) = 92897281 = 2^8*9!+1
%e A093154 a(5) = 980995276801 = 2^11*12!+1
%e A093154 a(6) = 23310331287699456001 = 2^16*17!+1
%e A093154 a(11) = 2^87*88!+1 is too large to include.
%t A093154 Select[Table[2^n (n + 1)! + 1, {n, 1, 100}], PrimeQ] (* _Vincenzo Librandi_, Mar 10 2015 *)
%o A093154 (Magma) [a: n in [1..40] | IsPrime(a) where a is 2^n*Factorial(n+1)+1]; // _Vincenzo Librandi_, Mar 10 2015
%Y A093154 Cf. A093155, A248879.
%K A093154 easy,nonn
%O A093154 1,1
%A A093154 _Enoch Haga_, Mar 25 2004
%E A093154 Edited and extended by _Ray Chandler_, Mar 27 2004
%E A093154 a(10) from _Robert Price_, Mar 10 2015