cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093157 Decimal expansion of inflection point of x^(1/x).

This page as a plain text file.
%I A093157 #15 Feb 16 2025 08:32:53
%S A093157 5,8,1,9,3,2,7,0,5,6,0,8,5,9,2,1,9,0,1,2,0,9,3,3,6,9,7,3,0,9,8,9,3,9,
%T A093157 4,7,8,8,8,9,2,2,7,3,4,9,4,8,4,2,5,0,9,7,4,7,2,6,4,9,6,7,8,0,3,2,8,9,
%U A093157 0,0,9,3,7,6,6,8,2,2,4,7,6,1,7,5,8,9,0,4,2,3,5,2,1,0,4,5,3,8,3,1,3,8
%N A093157 Decimal expansion of inflection point of x^(1/x).
%C A093157 The smaller of the two real roots of 1 - 3*x + log(x)*(log(x) + 2*x - 2) = 0. - _Amiram Eldar_, Jun 17 2021
%H A093157 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SteinersProblem.html">Steiner's Problem</a>.
%e A093157 0.581932705...
%t A093157 f[x_] := x^(1/x); RealDigits[ x /. FindRoot[ f''[x] == 0, {x, 1/2}, WorkingPrecision -> 102]] // First (* _Jean-François Alcover_, Feb 08 2013 *)
%Y A093157 Cf. A073229, A103476.
%K A093157 nonn,cons
%O A093157 0,1
%A A093157 _Eric W. Weisstein_, Mar 25 2004