This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093179 #48 Apr 03 2025 15:01:22 %S A093179 3,5,17,257,65537,641,274177,59649589127497217,1238926361552897, %T A093179 2424833,45592577,319489,114689,2710954639361, %U A093179 116928085873074369829035993834596371340386703423373313,1214251009,825753601,31065037602817,13631489,70525124609 %N A093179 Smallest prime factor of the n-th Fermat number F(n) = 2^(2^n) + 1. %C A093179 a(14) might need to be corrected if F(14) turns out to have a smaller factor than 116928085873074369829035993834596371340386703423373313. F(20) is composite, but no explicit factor is known. - _Jeppe Stig Nielsen_, Feb 11 2010 %D A093179 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 73. %H A093179 Wilfrid Keller, <a href="http://www.prothsearch.com/fermat.html">Prime factors k·2^n + 1 of Fermat numbers F_m and complete factoring status</a> %H A093179 Ivars Peterson, <a href="https://www.sciencenews.org/article/cracking-fermat-numbers">Cracking Fermat Numbers</a> %H A093179 Lorenzo Sauras-Altuzarra, <a href="https://doi.org/10.26493/2590-9770.1473.ec5">Some properties of the factors of Fermat numbers</a>, Art Discrete Appl. Math. (2022). %H A093179 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FermatNumber.html">Fermat Number</a> %F A093179 a(n) = A007117(n)*2^(n+2) + 1 for n >= 2. - _Jianing Song_, Mar 02 2021 %F A093179 a(n) = A020639(A000215(n)). - _Alois P. Heinz_, Oct 25 2024 %e A093179 F(0) = 2^(2^0) + 1 = 3, prime. %e A093179 F(5) = 2^(2^5) + 1 = 4294967297 = 641*6700417. %e A093179 So 3 as the 0th entry and 641 is the 5th term. %t A093179 Table[With[{k = 2^n}, FactorInteger[2^k + 1]][[1, 1]], {n, 0, 15, 1}] (* _Vincenzo Librandi_, Jul 23 2013 *) %o A093179 (PARI) g(n)=for(x=9,n,y=Vec(ifactor(2^(2^x)+1));print1(y[1]",")) \\ _Cino Hilliard_, Jul 04 2007 %Y A093179 Cf. A000051, A000215, A020639, A070592, A007117. %Y A093179 Leading entries in triangle A050922. %K A093179 nonn,hard %O A093179 0,1 %A A093179 _Eric W. Weisstein_, Mar 27 2004 %E A093179 Edited by _N. J. A. Sloane_, Jul 02 2008 at the suggestion of _R. J. Mathar_ %E A093179 a(14)-a(15) added by _Jeppe Stig Nielsen_, Feb 11 2010 %E A093179 a(16)-a(19) added based on terms of A007117 by _Jianing Song_, Mar 02 2021