This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093183 #23 May 30 2019 13:45:02 %S A093183 0,3,74,1114,13437,151311,1642197,17405273,181925434,1883327626, %T A093183 19364371468,198115934511,2019328584101 %N A093183 Number of consecutive runs of just 1 odd nonprime congruent to 1 mod 4 below 10^n. %C A093183 Split the odd nonprime sequence A014076 into two subsequences A091113 and A091236 with nonprimes labeled 1 mod 4 or 3 mod 4. Add count of nonprimes to sequence if just 1 nonprime congruent to 1 mod 4 occurs before interruption of a nonprime congruent to 3 mod 4. %C A093183 Otherwise said: count the nonprimes congruent to 1 mod 4 such that the next larger and next smaller odd nonprime is congruent to 3 mod 4. - _M. F. Hasler_, Sep 30 2018 %e A093183 a(3) = 74 because 74 single nonprime runs occur below 10^3, each run interrupted by a nonprime congruent to 3 mod 4. %e A093183 Below 10^2 = 100, there are only a(2) = 3 isolated odd nonprimes congruent to 1 mod 4: 33, 57 and 93. (Credits: _Peter Munn_, SeqFan list.) - _M. F. Hasler_, Sep 30 2018 %p A093183 A014076 := proc(n) %p A093183 option remember; %p A093183 if n = 1 then %p A093183 1; %p A093183 else %p A093183 for a from procname(n-1)+2 by 2 do %p A093183 if not isprime(a) then %p A093183 return a; %p A093183 end if; %p A093183 end do: %p A093183 end if; %p A093183 end proc: %p A093183 isA091113 := proc(n) %p A093183 option remember; %p A093183 if modp(n,4) = 1 and not isprime(n) then %p A093183 true; %p A093183 else %p A093183 false; %p A093183 end if; %p A093183 end proc: %p A093183 isA091236 := proc(n) %p A093183 option remember; %p A093183 if modp(n,4) = 3 and not isprime(n) then %p A093183 true; %p A093183 else %p A093183 false; %p A093183 end if; %p A093183 end proc: %p A093183 ct := 0 : %p A093183 n := 1 : %p A093183 for i from 2 do %p A093183 odnpr := A014076(i) ; %p A093183 prev := A014076(i-1) ; %p A093183 nxt := A014076(i+1) ; %p A093183 if isA091113(odnpr) and isA091236(prev) and isA091236(nxt) then %p A093183 ct := ct+1 ; %p A093183 end if; %p A093183 if odnpr< 10^n and nxt >= 10^n then %p A093183 print(n,ct) ; %p A093183 n := n+1 ; %p A093183 end if; %p A093183 end do: # _R. J. Mathar_, Oct 02 2018 %t A093183 A091113 = Select[4 Range[0, 10^5] + 1, ! PrimeQ[#] &]; %t A093183 A091236 = Select[4 Range[0, 10^5] + 3, ! PrimeQ[#] &]; %t A093183 lst = {}; Do[If[Length[s = Select[A091113,Between[{A091236[[i]], A091236[[i + 1]]}]]] == 1, AppendTo[lst, s]], {i, Length[A091236] - 1}]; Table[Count[Flatten[lst], x_ /; x < 10^n], {n, 5}] (* _Robert Price_, May 30 2019 *) %Y A093183 Cf. A091113, A091236, A093184-A093188, A093397-A093399, A092636. %K A093183 more,nonn %O A093183 1,2 %A A093183 _Enoch Haga_, Mar 30 2004 %E A093183 a(9)-a(13) from _Bert Dobbelaere_, Dec 19 2018