This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093301 #25 Apr 23 2024 07:56:10 %S A093301 1,2,13,23,113,137,1131,1137,1373,11379,11317,23719,111317,113171, %T A093301 211373,1113171,1113173,1317971,2313797,11131733,11317971,13179719, %U A093301 82337397,52313797,113179719,113733797,523137971,1113173331,1131797193,1797193373,2113733797,11131733311,11719337397 %N A093301 Earliest positive integer having embedded exactly k distinct primes. %H A093301 Robert G. Wilson v, <a href="/A093301/b093301.txt">Table of n, a(n) for n = 0..38</a> %H A093301 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_265.htm">Puzzle 265. Primes embedded</a>, The Prime Puzzles & Problems Connection. %F A093301 A039997(a(n)) = n and A039997(m) <> n for m < a(n). - _Reinhard Zumkeller_, Jul 16 2007 %e A093301 For example: a(5) = 137 because 137 is the earliest number that has embedded 5 distinct primes: 3, 7, 13, 37 & 137. %t A093301 f[n_] := Block[{id = IntegerDigits@ n, lst, len}, len = Length@ id; lst = FromDigits@# & /@ Flatten[ Table[ Take[id, {i, j}], {i, 1, len}, {j, i, len}], 1]; Count[ PrimeQ@ Union@ lst, True]] (* after David W. Wilson in A039997 *); t[_] := 0; t[1] = 2; k = 1; While[k < 10000000001, a = f@ k; If[ t[a] == 0, t[a] = k; Print[{a, k}]]; k += 2]; t /@ Range[0, 28] (* _Robert G. Wilson v_, Apr 10 2024 *) %o A093301 (PARI) dp(n)=if(n<12,return(if(isprime(n),[n],[])));my(v=vecsort(select(isprime, eval(Vec(Str(n)))),,8),t);while(n>9,if(gcd(n%10,10)>1,n\=10;next);t=10; while((t*=10)<n*10,if(isprime(n%t),v=concat(v,n%t)));v=vecsort(v,,8);n\=10);v %o A093301 print1(1);r=0;for(n=1,1e6,t=#dp(n);if(t>r,r=t;print1(", "n))) \\ _Charles R Greathouse IV_, Jul 10 2012 %o A093301 (Python) %o A093301 from sympy import isprime %o A093301 from itertools import count, islice %o A093301 def A039997(n): %o A093301 s = str(n) %o A093301 ss = (int(s[i:j]) for i in range(len(s)) for j in range(i+1, len(s)+1)) %o A093301 return len(set(k for k in ss if isprime(k))) %o A093301 def agen(): %o A093301 adict, n = dict(), 0 %o A093301 for k in count(1): %o A093301 v = A039997(k) %o A093301 if v not in adict: adict[v] = k %o A093301 while n in adict: yield adict[n]; n += 1 %o A093301 print(list(islice(agen(), 14))) # _Michael S. Branicky_, Aug 07 2022 %Y A093301 Cf. A000040, A039997. %K A093301 base,nonn %O A093301 0,2 %A A093301 _Carlos Rivera_, Apr 24 2004 %E A093301 Name clarified, offset corrected, and a(9) inserted by _Michael S. Branicky_, Aug 07 2022 %E A093301 a(22) inserted and a(30)-a(38) added by _Robert G. Wilson v_, Apr 10 2024