This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093305 #60 Jan 25 2024 17:02:56 %S A093305 1,2,3,4,5,9,11,19,29,48,75,132,213,369,627,1083,1857,3244,5619,9844, %T A093305 17205,30229,53115,93701,165313,292464,517831,918578,1630933,2900109, %U A093305 5161443,9197251,16402841,29283026,52319379,93558968,167427845,299846737,537358107,963651447,1729192433 %N A093305 Number of binary necklaces of length n with no subsequence 000. %D A093305 Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500. %H A093305 Michael De Vlieger, <a href="/A093305/b093305.txt">Table of n, a(n) for n = 1..500</a> %H A093305 P. Flajolet and M. Soria, <a href="/A093305/a093305.pdf">The Cycle Construction</a>, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60. %H A093305 P. Flajolet and M. Soria, <a href="http://dx.doi.org/10.1137/0404006">The Cycle Construction</a>, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60. %H A093305 Petros Hadjicostas, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Hadjicostas/hadji2.html">Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence</a>, Journal of Integer Sequences, 19 (2016), #16.8.2. %H A093305 Silvana Ramaj, <a href="https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3464&context=etd">New Results on Cyclic Compositions and Multicompositions</a>, Master's Thesis, Georgia Southern Univ., 2021. See p. 57. %H A093305 L. Zhang and P. Hadjicostas, <a href="http://www.appliedprobability.org/data/files/TMS%20articles/40_2_3.pdf">On sequences of independent Bernoulli trials avoiding the pattern '11..1'</a>, Math. Scientist, 40 (2015), 89-96. %F A093305 a(n) = (1/n) * Sum_{d divides n} totient(n/d)*A001644(d). %F A093305 G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x*(1+x+x^2). - _Joerg Arndt_, Aug 06 2012 %F A093305 a(n) ~ d^n / n, where d = (19 + 3*sqrt(33))^(1/3)/3 + 4/(3*(19 + 3*sqrt(33))^(1/3)) + 1/3 = A058265 = 1.8392867552141611325518... - _Vaclav Kotesovec_, Jul 13 2019 %t A093305 Table[1/n * Sum[EulerPhi[n/d] (d Sum[Sum[Binomial[j, d - 3 k + 2 j] Binomial[k, j], {j, d - 3 k, k}]/k, {k, d}]), {d, Divisors@ n}], {n, 41}] (* _Michael De Vlieger_, Dec 28 2016, after _Vladimir Joseph Stephan Orlovsky_ at A001644 *) %o A093305 (PARI) %o A093305 N=66; x='x+O('x^N); %o A093305 B(x)=x*(1+x+x^2); %o A093305 A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k)))); %o A093305 Vec(A) %o A093305 /* _Joerg Arndt_, Aug 06 2012 */ %Y A093305 Row 3 of A322057. %Y A093305 Cf. A000358, A001644, A280218, A280303. %K A093305 easy,nonn %O A093305 1,2 %A A093305 _Philippe Deléham_, Apr 24 2004