This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093324 #26 Aug 15 2023 02:10:00 %S A093324 2,1,1,2,1,7954,1,34,101,2,1,1181716,1,54,17,2,1,1080,1,57910,9,2,1, %T A093324 202,2075,5538,3 %N A093324 a(n) is the smallest natural number m such that n^m + m is prime. %C A093324 a(n)=1 iff n+1 is prime. For n>1 n+a(n) is odd (for n>1 a(n) is odd iff n is even). a(11) is greater than 7000. a(m) for m = 12, 13, 14, 15, 16, 17 and 18 are 1, 54, 17, 2, 1, 1080, 1. 5^7954 + 7954 is a 5560-digit probable prime. %C A093324 a(11) is greater than 8651. - _Robert G. Wilson v_, May 24 2004 %C A093324 a(11) is greater than 20165, so every prime of the form 11^m + m has more than 21000 digits. - _Farideh Firoozbakht_, Jun 10 2004 %C A093324 a(11) is greater than 80000. - _T. D. Noe_, Mar 07 2007 %C A093324 a(11) is greater than 190000. - _T. D. Noe_, Jul 31 2008 %H A093324 Henri Lifchitz & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=11%5E1181716%2B1181716">11^1181716+1181716</a>, a(11). %H A093324 Henri Lifchitz & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=19%5E57910%2B57910">19^57910+57910</a>, a(19). %e A093324 a(3)=2 because 3^2 + 2 is prime and 3^1 + 1 is composite. %t A093324 a[n_]:= (For[m=1, !PrimeQ[n^m+m], m++]; m); Do[Print[a[n]], {n,0,10}] %o A093324 (Python) %o A093324 from sympy import isprime %o A093324 def a(n): %o A093324 m = 0 %o A093324 while not isprime(n**m + m): m += 1 %o A093324 return m %o A093324 for n in range(11): %o A093324 print(a(n), end=", ") # _Michael S. Branicky_, Feb 01 2021 %o A093324 (Magma) %o A093324 function A093324(n) %o A093324 t:=0; %o A093324 while not IsPrime(n^t + t) do %o A093324 t+:=1; %o A093324 end while; %o A093324 return t; %o A093324 end function; %o A093324 [A093324(n): n in [0..10]]; // _G. C. Greubel_, Aug 10 2023 %K A093324 nonn,hard,more %O A093324 0,1 %A A093324 _Farideh Firoozbakht_, May 11 2004 %E A093324 a(11)-a(26) from _Kellen Shenton_, Aug 14 2023