A093369 a(n) = sum of lengths of strings that can be generated by any starting string of n 2's and 3's that starts with a 2, using the rule described in the Comments lines.
1, 6, 14, 42, 98, 242, 552, 1394, 2935, 6471, 14006, 30060, 64223, 136914, 290224, 613509, 1292567, 2717311, 5696864, 11920124, 24889066, 51880008, 107954163, 224305440, 465388743, 964349526, 1995808823, 4125871527, 8520180124, 17577302639, 36228352911
Offset: 1
Keywords
Examples
a(3) = 14: the starting string, final string and length are as follows: 222 2223 4 223 223 3 232 232 3 233 2332 4, for a total of 4+3+3+4 = 14.
Links
- Lars Blomberg, Table of n, a(n) for n = 1..37
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2.
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [pdf, ps].
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- Index entries for sequences related to Gijswijt's sequence
- Index entries for sequences related to curling numbers
Extensions
a(21)-a(31) from Lars Blomberg, Jul 25 2017
Comments