cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093396 Denominators of n divided by the product of the anti-divisors of n.

This page as a plain text file.
%I A093396 #24 Oct 19 2023 07:36:32
%S A093396 2,3,6,2,30,15,4,42,42,10,270,54,8,33,2310,280,78,78,8,4050,4050,14,
%T A093396 1428,102,440,6270,114,32,7938,257985,520,138,552,16,11250,866250,616,
%U A093396 1458,1458,2720,14790,174,131040,16926,17670,190,39204,78408,8,2315250
%N A093396 Denominators of n divided by the product of the anti-divisors of n.
%C A093396 See A066272 for definition of anti-divisor.
%H A093396 Dumitru Damian, <a href="/A093396/b093396.txt">Table of n, a(n) for n = 3..10000</a>
%F A093396 a(n) = A091507(n)/GCD(n, A091507(n))
%e A093396 The anti-divisors of 18 are 4, 5, 7, 12. Hence a(18) = 4*5*7*12/GCD(4*5*7*12, 18) = 280.
%o A093396 (Python)
%o A093396 import numpy as np
%o A093396 from sympy.ntheory.factor_ import antidivisors
%o A093396 def a093396(k):
%o A093396         return (m:=np.prod(antidivisors(k), dtype=object))//np.gcd(m,k, dtype=object)
%o A093396 {print(a093396(k), end = ', ') for k in range(3,10**2)} # _Dumitru Damian_, Oct 16 2023
%Y A093396 Cf. A066417, A091507, A093394, A093395 (numerators).
%K A093396 nonn,frac
%O A093396 3,1
%A A093396 _Lior Manor_, Mar 28 2004
%E A093396 Name changed by _Franklin T. Adams-Watters_, Aug 21 2013