cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093407 For p = prime(n), the least k such that p divides the numerator of a sum 1/k + 1/x1 +...+ 1/xm, where x1,...,xm (for any m) are distinct positive integers <= k.

This page as a plain text file.
%I A093407 #8 Feb 16 2025 08:32:53
%S A093407 3,2,3,4,3,4,5,4,5,5,5,6,6,7,5,7,7,5,6,7,7,8,7,7,6,8,7,5,8,8,6,7,5,8,
%T A093407 8,9,8,8,9,7,8,9,9,9,9,8,7,7,8,8,10,8,8,9,10,9,8,8,9,9,8,7,9,8,10,7,9,
%U A093407 9,10,10,8,9,8,10,9,10,7,9,9,11,9,9,9,10,10,9,10,7,9,9,11,10,9,11,11,11
%N A093407 For p = prime(n), the least k such that p divides the numerator of a sum 1/k + 1/x1 +...+ 1/xm, where x1,...,xm (for any m) are distinct positive integers <= k.
%C A093407 This is a very slow-growing sequence: for n <= 1000, a(n) <= 18. The number a(n) * prime(n) is the least number divisible by prime(n) in sequence A092671.
%H A093407 Peter Pein, <a href="/A093407/b093407.txt">Table of n, a(n) for n = 1..10515</a>
%H A093407 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>
%e A093407 a(1) = 3 because 2 = prime(1) and 1/1 + 1/3 = 4/3, whose numerator is divisible by 2.
%t A093407 len=100; a=Table[0, {len}]; done=False; s={0}; n=0; While[ !done, n++; s=Join[s, s+1/n]; ns=Numerator[s]; done=True; Do[If[a[[i]]==0, p=Prime[i]; If[Count[ns, _?(#>0 && Mod[ #, p]==0&)]>0, a[[i]]=n, done=False]], {i, len}]]; a
%Y A093407 Cf. A092671 (n such that there is an Egyptian fraction partition of unity having smallest unit fraction 1/n), A093408.
%K A093407 nonn
%O A093407 1,1
%A A093407 _T. D. Noe_, Mar 29 2004