This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093422 #15 Sep 08 2022 08:45:13 %S A093422 1,2,2,3,6,1,4,12,8,12,5,20,5,60,8,6,30,8,20,36,240,7,42,35,420,504, %T A093422 560,180,8,56,16,840,224,6720,1152,1120,9,72,21,504,432,20160,4320, %U A093422 90720,8064,10,90,80,2520,756,3360,86400,453600,67200,725760,11,110,33,3960 %N A093422 In the triangle shown below the n-th row contains n rational numbers n/1, {n*(n-1)}/{n +(n-1)}, {(n)*(n-1)*(n-2)}/{n +(n-1)+(n-2)}, ..., the last term being 2*(n-1)!/(n+1). Sequence gives the numerators in each row. %H A093422 G. C. Greubel, <a href="/A093422/b093422.txt">Rows n=0..100 of triangle, flattened</a> %F A093422 A093422(n,m)/A093423(n,m) = 2*binomial(n,m)*(m-1)!/(2*n-m+1) for 2 <= m < n. A093422(n,1)/A093423(n,1)= n. - _R. J. Mathar_, Apr 28 2007 %e A093422 Triangle of fractions starts %e A093422 1, %e A093422 2, 2/3, %e A093422 3, 6/5, 1, %e A093422 4, 12/7, 8/3, 12/5, %e A093422 5, 20/9, 5, 60/7, 8, %e A093422 6, 30/11, 8, 20, 36, 240/7, %e A093422 7, 42/13, 35/3, 420/11, 504/5, 560/3, 180, %e A093422 8, 56/15, 16, 840/13, 224, 6720/11, 1152, 1120, %e A093422 9, 72/17, 21, 504/5, 432, 20160/13, 4320, 90720/11, 8064, %p A093422 A09342x := proc(n,m) local i,N,D ; N := n ; if m = 1 then D := 1 ; else D := n ; end ; for i from 1 to m-1 do N := N*(n-i) ; D := D+n-i ; od ; simplify(N/D) ; end: A093422 := proc(n,m) numer(A09342x(n,m)) ; end: for n from 1 to 12 do for m from 1 to n do printf("%d, ",A093422(n,m)) ; od ; od ; # _R. J. Mathar_, Apr 28 2007 %t A093422 Table[If[k == 1, n, Numerator[2*Binomial[n,k]*(k-1)!/(2*n-k+1)]], {n,1,30}, {k,1,n}]//Flatten (* _G. C. Greubel_, Sep 01 2018 *) %o A093422 (PARI) for(n=1,10, for(k=1,n, print1(if(k==1, n, denominator(2*binomial(n,k)*(k-1)!/(2*n-k+1))), ", "))) \\ _G. C. Greubel_, Sep 01 2018 %o A093422 (Magma) /* as a triangle */ [[k le 1 select n else Numerator(2*Binomial(n,k)*Factorial(k-1)/(2*n-k+1)): k in [1..n]]: n in [1..10]]; // _G. C. Greubel_, Sep 01 2018 %Y A093422 Cf. A093412, A093413, A093414, A093415, A093417, A093418, A093419, A093420, A093421, A093423. %K A093422 easy,frac,nonn,tabl %O A093422 1,2 %A A093422 _Amarnath Murthy_, Mar 30 2004 %E A093422 More terms from _R. J. Mathar_, Apr 28 2007