A093429 Number of distinct prime factors of (prime(1)*...*prime(n))+(prime(n+1)*...*prime(2n)), where prime(n) is the n-th prime.
1, 1, 1, 1, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 4, 3, 2, 6, 3, 4, 4, 3, 1, 1, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 5, 4, 2, 3, 3, 5, 3, 7, 4, 1, 4, 3, 4, 3, 6, 2, 4, 3, 3
Offset: 1
Examples
a(31)=4 because 509102378439545188849067644696085192959414195658632710736111053092210207 = 3711597629 * 238694867020723 * 226814268663739929299 * 2533557617597929944840907379.
Links
- Dario Alejandro Alpern, Factorization using the Elliptic Curve Method.
- P. Samidoost, Primenumbers group posting.
- Cashogor, Payam Samidoost, David Cleaver, Jens Kruse Andersen, Creating Primes, digest of 9 messages in primeforms Yahoo group, May 12, 2004. [Cached copy]
Programs
-
Mathematica
PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1} ] & /@ FactorInteger[n]]; f[n_] := Length[ PrimeFactors[ Product[Prime[i], {i, n}] + Product[Prime[i + n], {i, n}]]]; Table[ f[n], {n, 20}]
-
PARI
a(n) = omega(prod(k=1, n, prime(k)) + prod(k=n+1, 2*n, prime(k))); \\ Daniel Suteu, Nov 26 2019
Formula
Extensions
a(40)-a(48) from Robert G. Wilson v, May 27 2004
a(49)-a(54) from Daniel Suteu, Nov 26 2019
Comments