This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093485 #37 Sep 08 2022 08:45:13 %S A093485 1,19,64,136,235,361,514,694,901,1135,1396,1684,1999,2341,2710,3106, %T A093485 3529,3979,4456,4960,5491,6049,6634,7246,7885,8551,9244,9964,10711, %U A093485 11485,12286,13114,13969,14851,15760,16696,17659,18649,19666,20710,21781 %N A093485 a(n) = (27*n^2 + 9*n + 2)/2. %C A093485 Dodecahedral gnomon numbers: first differences of dodecahedral numbers. %C A093485 The sequence is related to other gnomon numbers of polyhedra, known by other more familiar names: triangular numbers (tetrahedral gnomon numbers), hexagonal numbers (cubic gnomon numbers), square pyramidal numbers (octahedral gnomon numbers). %C A093485 A124388 = first differences; second differences = 27. - _Reinhard Zumkeller_, Oct 30 2006 %C A093485 Sums of the triangular numbers from A000217(3*n-1) to A000217(3*n+1), with A000217(-1) = 0. - _Bruno Berselli_, Sep 04 2018 %H A093485 Vincenzo Librandi, <a href="/A093485/b093485.txt">Table of n, a(n) for n = 0..10000</a> %H A093485 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A093485 a(n) = (n+1)*(3*(n+1)-1)*(3*(n+1)-2)/2-n*(3*n-1)*(3*n-2)/2. %F A093485 G.f.: (1 + 16*x + 10*x^2)/(1 - x)^3. - _Colin Barker_, Mar 28 2012 %e A093485 a(1) = 19 because (1+1)*(3*(1+1)-1)*(3*(1+1)-2)/2-1*(3*1-1)*(3*1-2)/2 = 2*(6-1)*(6-2)/2 - 1*(3-1)*(3-2)/2 = 20-1 = 19. %o A093485 (Magma) [(27*n^2 + 9*n + 2)/2 : n in [0..50]]; // _Vincenzo Librandi_, Oct 08 2011 %o A093485 (Haskell) %o A093485 a093485 n = (9 * n * (3 * n + 1) + 2) `div` 2 %o A093485 -- _Reinhard Zumkeller_, Jun 16 2013 %o A093485 (PARI) a(n)=(27*n^2+9*n+2)/2 \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A093485 Cf. A000217, A000330, A003215, A005901, A006656. %K A093485 nonn,easy %O A093485 0,2 %A A093485 _Michael Joseph Halm_, May 13 2004 %E A093485 New definition from _Ralf Stephan_, Dec 01 2004 %E A093485 Name corrected and initial term added by _Arkadiusz Wesolowski_, Aug 15 2011