cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093510 Transform of the prime sequence by the Rule30 cellular automaton.

This page as a plain text file.
%I A093510 #4 Feb 16 2025 08:32:53
%S A093510 2,3,6,8,9,11,12,14,15,17,18,20,21,23,24,25,29,30,32,33,37,38,39,41,
%T A093510 42,44,45,47,48,49,53,54,55,59,60,62,63,67,68,69,71,72,74,75,79,80,81,
%U A093510 83,84,85,89,90,91,97,98,99,101,102,104,105,107,108,110,111,113,114,115
%N A093510 Transform of the prime sequence by the Rule30 cellular automaton.
%C A093510 As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.
%H A093510 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/aronsf.pdf">Binary mapping of monotonic sequences - the Aronson and the CA functions</a>
%H A093510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A093510 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rule30.html">Rule30 Elementary Cellular Automaton</a>
%o A093510 (PARI) {ca_tr(ca,v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
%o A093510 local(cav=vector(8),a,r=[],i,j,k,l,po,p=vector(3));
%o A093510 a=binary(min(255,ca));k=matsize(a)[2];forstep(i=k,1,- 1,cav[k-i+1]=a[i]);
%o A093510 j=0;l=matsize(v)[2];k=v[l];po=1;
%o A093510 for(i=1,k+2,j*=2;po=isin(i,v,l,po);j=(j+max(0,sign(po)))% 8;if(cav[j+1],r=concat(r,i)));
%o A093510 return(r) /* See the function "isin" at A092875 */}
%Y A093510 Cf. A092855, A051006, A093511, A093512, A093513, A093514, A093515, A093516, A093517.
%K A093510 easy,nonn
%O A093510 1,1
%A A093510 Ferenc Adorjan (fadorjan(AT)freemail.hu)