cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093512 Transform of the prime sequence by the Rule73 cellular automaton.

This page as a plain text file.
%I A093512 #4 Feb 16 2025 08:32:53
%S A093512 1,3,4,10,16,22,26,27,28,34,35,36,40,46,50,51,52,56,57,58,64,65,66,70,
%T A093512 76,77,78,82,86,87,88,92,93,94,95,96,100,106,112,116,117,118,119,120,
%U A093512 121,122,123,124,125,126,130,134,135,136,142,143,144,145,146,147,148
%N A093512 Transform of the prime sequence by the Rule73 cellular automaton.
%C A093512 As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.
%H A093512 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/aronsf.pdf">Binary mapping of monotonic sequences - the Aronson and the CA functions</a>
%H A093512 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%o A093512 (PARI) {ca_tr(ca,v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
%o A093512 local(cav=vector(8),a,r=[],i,j,k,l,po,p=vector(3));
%o A093512 a=binary(min(255,ca));k=matsize(a)[2];forstep(i=k,1,- 1,cav[k-i+1]=a[i]);
%o A093512 j=0;l=matsize(v)[2];k=v[l];po=1;
%o A093512 for(i=1,k+2,j*=2;po=isin(i,v,l,po);j=(j+max(0,sign(po)))% 8;if(cav[j+1],r=concat(r,i)));
%o A093512 return(r) /* See the function "isin" at A092875 */}
%Y A093512 Cf. A092855, A051006, A093510, A093511, A093513, A093514, A093515, A093516, A093517.
%K A093512 easy,nonn
%O A093512 1,2
%A A093512 Ferenc Adorjan (fadorjan(AT)freemail.hu)