This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093512 #4 Feb 16 2025 08:32:53 %S A093512 1,3,4,10,16,22,26,27,28,34,35,36,40,46,50,51,52,56,57,58,64,65,66,70, %T A093512 76,77,78,82,86,87,88,92,93,94,95,96,100,106,112,116,117,118,119,120, %U A093512 121,122,123,124,125,126,130,134,135,136,142,143,144,145,146,147,148 %N A093512 Transform of the prime sequence by the Rule73 cellular automaton. %C A093512 As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855. %H A093512 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/aronsf.pdf">Binary mapping of monotonic sequences - the Aronson and the CA functions</a> %H A093512 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a> %o A093512 (PARI) {ca_tr(ca,v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */ %o A093512 local(cav=vector(8),a,r=[],i,j,k,l,po,p=vector(3)); %o A093512 a=binary(min(255,ca));k=matsize(a)[2];forstep(i=k,1,- 1,cav[k-i+1]=a[i]); %o A093512 j=0;l=matsize(v)[2];k=v[l];po=1; %o A093512 for(i=1,k+2,j*=2;po=isin(i,v,l,po);j=(j+max(0,sign(po)))% 8;if(cav[j+1],r=concat(r,i))); %o A093512 return(r) /* See the function "isin" at A092875 */} %Y A093512 Cf. A092855, A051006, A093510, A093511, A093513, A093514, A093515, A093516, A093517. %K A093512 easy,nonn %O A093512 1,2 %A A093512 Ferenc Adorjan (fadorjan(AT)freemail.hu)