cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093516 Transform of the prime sequence by the Rule137 cellular automaton.

This page as a plain text file.
%I A093516 #4 Feb 16 2025 08:32:53
%S A093516 1,3,10,16,22,26,27,28,34,35,36,40,46,50,51,52,56,57,58,64,65,66,70,
%T A093516 76,77,78,82,86,87,88,92,93,94,95,96,100,106,112,116,117,118,119,120,
%U A093516 121,122,123,124,125,126,130,134,135,136,142,143,144,145,146,147,148,154
%N A093516 Transform of the prime sequence by the Rule137 cellular automaton.
%C A093516 As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.
%H A093516 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/aronsf.pdf">Binary mapping of monotonic sequences - the Aronson and the CA functions</a>
%H A093516 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%o A093516 (PARI) {ca_tr(ca,v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
%o A093516 local(cav=vector(8),a,r=[],i,j,k,l,po,p=vector(3));
%o A093516 a=binary(min(255,ca));k=matsize(a)[2];forstep(i=k,1,- 1,cav[k-i+1]=a[i]);
%o A093516 j=0;l=matsize(v)[2];k=v[l];po=1;
%o A093516 for(i=1,k+2,j*=2;po=isin(i,v,l,po);j=(j+max(0,sign(po)))% 8;if(cav[j+1],r=concat(r,i)));
%o A093516 return(r) /* See the function "isin" at A092875 */}
%Y A093516 Cf. A092855, A051006, A093510, A093511, A093512, A093513, A093514, A093515, A093517.
%K A093516 easy,nonn
%O A093516 1,2
%A A093516 Ferenc Adorjan (fadorjan(AT)freemail.hu)