cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093517 Transform of the prime sequence by the Rule225 cellular automaton.

This page as a plain text file.
%I A093517 #4 Feb 16 2025 08:32:53
%S A093517 1,4,5,7,10,13,16,19,22,26,27,28,31,34,35,36,40,43,46,50,51,52,56,57,
%T A093517 58,61,64,65,66,70,73,76,77,78,82,86,87,88,92,93,94,95,96,100,103,106,
%U A093517 109,112,116,117,118,119,120,121,122,123,124,125,126,130,134,135,136,139
%N A093517 Transform of the prime sequence by the Rule225 cellular automaton.
%C A093517 As described in A051006, a monotonic sequence can be mapped into a fractional real. Then the binary digits of that real can be treated (transformed) by an elementary cellular automaton. Taken resulted sequence of binary digits as a fractional real, it can be mapped back into a sequence, as in A092855.
%H A093517 Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/aronsf.pdf">Binary mapping of monotonic sequences - the Aronson and the CA functions</a>
%H A093517 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%o A093517 (PARI) {ca_tr(ca,v)= /* Calculates the Cellular Automaton transform of the vector v by the rule ca */
%o A093517 local(cav=vector(8),a,r=[],i,j,k,l,po,p=vector(3));
%o A093517 a=binary(min(255,ca));k=matsize(a)[2];forstep(i=k,1,- 1,cav[k-i+1]=a[i]);
%o A093517 j=0;l=matsize(v)[2];k=v[l];po=1;
%o A093517 for(i=1,k+2,j*=2;po=isin(i,v,l,po);j=(j+max(0,sign(po)))% 8;if(cav[j+1],r=concat(r,i)));
%o A093517 return(r) /* See the function "isin" at A092875 */}
%Y A093517 Cf. A092855, A051006, A093510, A093511, A093512, A093513, A093514, A093515, A093516.
%K A093517 easy,nonn
%O A093517 1,2
%A A093517 Ferenc Adorjan (fadorjan(AT)freemail.hu)