cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093527 Denominators of even raw moments in the distribution of line lengths for lines picked at random in the unit disk.

This page as a plain text file.
%I A093527 #38 Feb 16 2025 08:32:53
%S A093527 1,1,3,2,5,1,7,4,9,5,11,3,13,7,1,8,17,3,19,1,7,11,23,2,25,13,27,1,29,
%T A093527 15,31,16,11,17,5,9,37,19,39,2,41,1,43,11,1,23,47,4,49,25,17,13,53,9,
%U A093527 55,7,19,29,59,5,61,31,21,32,13,1,67,17,23,7,71,2,73,37,5,19,1,13,79
%N A093527 Denominators of even raw moments in the distribution of line lengths for lines picked at random in the unit disk.
%H A093527 Stefano Spezia, <a href="/A093527/b093527.txt">Table of n, a(n) for n = 0..10000</a>
%H A093527 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DiskLinePicking.html">Disk Line Picking</a>
%F A093527 a(k) = Denominator[(2*Gamma[3 + n])/((2 + n)*Gamma[2 + n/2]*Gamma[3 + n/2])] for n = 2k.
%F A093527 From _Paul Barry_, Sep 11 2004: (Start)
%F A093527 a(n) = numerator((n+1)(n+2)/binomial(2(n+1), n+1));
%F A093527 a(n) = numerator(2*binomial(n+2, 2)/binomial(2(n+1), n+1)). (End)
%F A093527 a(n) = numerator((n+1)/C(n+1)). - _Paul Barry_, Nov 17 2004
%F A093527 a(n) = denominator(binomial(2n, n)/n). - _Enrique Pérez Herrero_, Oct 05 2011
%F A093527 a(n) = n/gcd(n,binomial(2n,n)). - _Peter Luschny_, Oct 05 2011
%F A093527 a(n) = denominator((n + 2)*binomial(2*n+3, n+1)/((n + 1)*(2*n + 3))). - _Stefano Spezia_, Aug 06 2022
%e A093527 1, 128/(45*Pi), 1, 2048/(525*Pi), 5/3, 16384/(2205*Pi), ...
%p A093527 A093527 := n -> n / igcd(n,binomial(2*n,n)): # _Peter Luschny_, Oct 05 2011
%t A093527 A093527[n_]:=Denominator[Binomial[2n,n]/n]; Array[A093527,200] (* _Enrique Pérez Herrero_, Oct 05 2011 *)
%Y A093527 Cf. A093070, A093526, A093528, A093529.
%Y A093527 Second column of A098505.
%Y A093527 Cf. A000108.
%K A093527 nonn,frac
%O A093527 0,3
%A A093527 _Eric W. Weisstein_, Mar 30 2004