cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093556 Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.

This page as a plain text file.
%I A093556 #42 Aug 03 2025 16:26:21
%S A093556 1,1,0,1,-1,0,1,-4,2,0,1,-5,3,-3,0,1,-4,17,-10,5,0,1,-35,287,-118,691,
%T A093556 -691,0,1,-8,112,-352,718,-280,140,0,1,-21,66,-293,4557,-3711,10851,
%U A093556 -10851,0,1,-40,217,-4516,2829,-26332,750167,-438670,219335,0,1,-33,506,-2585,7579,-198793,1540967,-627073,1222277,-1222277,0
%N A093556 Triangle of numerators of coefficients of Faulhaber polynomials in Knuth's version.
%C A093556 The companion triangle with the denominators is A093557.
%C A093556 In the 1986 Edwards reference, eq. 7, p. 453, the lower triangular matrix F^{-1} is obtained from F^{-1}(m,l) = A(m,m-l)/m with m >= 2, l >= 2. See the W. Lang link for this triangle.
%C A093556 Sum_{j=1..n} j^(2*m-1) = Sum_{k=0..m-1} A(m,k)*u^(m-k)/(2*m), with u:=n*(n+1), A(m,k):= A093556(m,k)/ A093557(m,k) and m=1,2,... (Faulhaber's m-th row polynomial in falling powers of u:=n*(n+1), divided by 2*m, gives the sum of the (2*m-1)-th power of the first n integers > 0. See the W. Lang link for the Faulhaber triangle.)
%C A093556 Sum_{j=1..n} j^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} (m-j)*A(m,j)*(n*(n+1))^(m-1-j)/(2*m*(2*m-1)), with u:=n*(n+1) and m >= 2. Sum of the even powers of the first n integers > 0. From the bottom of p. 288 of the 1993 Knuth reference with A^{(m)}_k = A(m,k). See also A093558 with A093559.
%D A093556 Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
%H A093556 A. W. F. Edwards, <a href="http://www.jstor.org/stable/2323466">A quick route to sums of powers</a>, Amer. Math. Monthly 93 (1986) 451-455.
%H A093556 D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1197512-7">Johann Faulhaber and sums of powers</a>, Math. Comput. 203 (1993), 277-294.
%H A093556 Wolfdieter Lang, <a href="/A093556/a093556.txt">First 10 rows and Faulhaber triangle with rational entries and examples</a>.
%H A093556 D. Yeliussizov, <a href="https://web.archive.org/web/20160927104833/http://www.kazntu.kz/sites/default/files/20121221ND_Eleusizov.pdf">Permutation Statistics on Multisets</a>, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. - _N. J. A. Sloane_, Jan 03 2013
%F A093556 a(m, k) = numerator(A(m, k)) with recursion: A(m, 0)=1, A(m, k) = -(Sum_{j=0..k-1} binomial(m-j, 2*k+1-2*j)*A(m, j))/(m-k) if 0 <= k <= m-1, otherwise 0. From the Knuth 1993 reference, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
%F A093556 A(m, k) = ((-1)^(m-k))*Sum_{j=0..m-k} binomial(2*m, m-k-j)*binomial(m-k+j, j)*((m-k-j)/(m-k+j))*Bernoulli(m+k+j). From the Knuth 1993 reference, p. 289, last eq. with A^{(m)}_k = A(m, k). Attributed to I. M. Gessel and X. G. Viennot (see A065551 for the 1989 reference). For Bernoulli numbers see A027641 with A027642.
%e A093556 Triangle begins:
%e A093556   [1];
%e A093556   [1,0];
%e A093556   [1,-1,0];
%e A093556   [1,-4,2,0];
%e A093556 ...
%e A093556 Numerators of Knuth's Faulhaber triangle A(m,k):
%e A093556   [1],
%e A093556   [1, 0],
%e A093556   [1, -1/2, 0],
%e A093556   [1, -4/3, 2/3, 0],
%e A093556   ...
%e A093556 A(m,m-1)=1 if m=1, else 0.
%e A093556 Edwards' Faulhaber triangle F^{-1}(m,l) = A(m,m-l)/m, for m>=2, l>=2:
%e A093556   [1/2],
%e A093556   [-1/6, 1/3],
%e A093556   [1/6, -1/3, 1/4],
%e A093556   [-3/10, 3/5, -1/2, 1/5],
%e A093556   ...
%t A093556 a[m_, k_] := (-1)^(m-k)*Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Numerator[a[m, k]], {m, 1, 11}, {k, 0, m-1}]] (* _Jean-François Alcover_, Oct 25 2011 *)
%o A093556 (PARI) T(n,k) = numerator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ _Michel Marcus_, Aug 03 2025
%Y A093556 Cf. A093557 (denominators).
%Y A093556 Cf. A065551 and A065553 for Ira M. Gessel's and X. G. Viennot's version of Faulhaber triangle which is Edwards' Faulhaber triangle augmented with a first row and first column.
%Y A093556 Cf. A027641, A027642, A093558, A093559, A103438.
%K A093556 sign,frac,tabl,easy
%O A093556 1,8
%A A093556 _Wolfdieter Lang_, Apr 02 2004
%E A093556 More terms from _Michel Marcus_, Aug 03 2025