cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093557 Triangle of denominators of coefficients of Faulhaber polynomials in Knuth's version.

This page as a plain text file.
%I A093557 #32 Aug 03 2025 16:26:26
%S A093557 1,1,1,1,2,1,1,3,3,1,1,2,1,2,1,1,1,2,1,1,1,1,6,15,3,15,30,1,1,1,3,3,3,
%T A093557 1,1,1,1,2,1,1,5,2,5,10,1,1,3,2,7,1,3,42,21,21,1,1,2,3,2,1,6,15,3,5,
%U A093557 10,1,1,1,5,3,10,5,15,5,5,1,1,1,1,6,3,2,3,3,7,1,1,14,21,42,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1
%N A093557 Triangle of denominators of coefficients of Faulhaber polynomials in Knuth's version.
%C A093557 The companion triangle with the numerators is A093556, where more information can be found.
%H A093557 A. Dzhumadil'daev and D. Yeliussizov, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Yeliussizov/dzhuma6.html">Power sums of binomial coefficients</a>, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
%H A093557 Wolfdieter Lang, <a href="/A093557/a093557.txt">First 10 rows</a>.
%H A093557 D. Yeliussizov, <a href="https://web.archive.org/web/20160927104833/http://www.kazntu.kz/sites/default/files/20121221ND_Eleusizov.pdf">Permutation Statistics on Multisets</a>, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012.
%F A093557 a(m, k) = denominator(A(m, k)) with recursion: A(m, 0)=1, A(m, k)=-(sum(binomial(m-j, 2*k+1-2*j)*A(m, j), j=0..k-1))/(m-k) if 0<= k <= m-1, else 0. From the 1993 Knuth reference, given in A093556, p. 288, eq.(*) with A^{(m)}_k = A(m, k).
%e A093557 Triangle begins:
%e A093557   [1];
%e A093557   [1,1];
%e A093557   [1,2,1];
%e A093557   [1,3,3,1];
%e A093557   ...
%e A093557 Denominators of [1]; [1,0]; [1,-1/2,0]; [1,-4/3,2/3,0]; ... (see W. Lang link in A093556.)
%t A093557 a[m_, k_] := (-1)^(m-k)* Sum[ Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; Flatten[ Table[ Denominator[a[m, k]], {m, 1, 14}, {k, 0, m-1}]] (* _Jean-François Alcover_, Oct 25 2011 *)
%o A093557 (PARI) T(n,k) = denominator((-1)^(n-k)*sum(j=0, n-k, binomial(2*n, n-k-j)*binomial(n-k+j,j)*(n-k-j)/(n-k+j) * bernfrac(n+k+j))); \\ _Michel Marcus_, Aug 03 2025
%Y A093557 Cf. A093556 (numerators).
%K A093557 nonn,frac,tabl,easy
%O A093557 1,5
%A A093557 _Wolfdieter Lang_, Apr 02 2004
%E A093557 More terms from _Michel Marcus_, Aug 03 2025