cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093558 Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.

This page as a plain text file.
%I A093558 #29 Aug 09 2025 11:23:42
%S A093558 1,1,-1,1,-1,1,1,-1,1,-1,1,-5,17,-5,5,1,-5,41,-236,691,-691,1,-7,14,
%T A093558 -22,359,-7,7,1,-14,77,-293,1519,-1237,3617,-3617,1,-6,217,-1129,8487,
%U A093558 -6583,750167,-43867,43867,1,-5,23,-470,689,-28399,1540967,-1254146,174611,-174611
%N A093558 Triangle of numerators of coefficients of Faulhaber polynomials used for sums of even powers.
%C A093558 The companion triangle with the denominators is A093559.
%C A093558 Sum_{k=1..n} k^(2*(m-1)) = (2*n+1)*Sum_{j=0..m-1} Fe(m,k)*(n*(n+1))^(m-1-j), m >= 2. Sums of even powers of the first n integers >0 as polynomials in u := n*(n+1) (falling powers of u). See bottom of p. 288 of the 1993 Knuth reference.
%D A093558 Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
%H A093558 A. Dzhumadil'daev and D. Yeliussizov, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Yeliussizov/dzhuma6.html">Power sums of binomial coefficients</a>, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
%H A093558 D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1197512-7">Johann Faulhaber and sums of powers</a>, Math. Comput. 203 (1993), 277-294.
%H A093558 Wolfdieter Lang, <a href="/A093558/a093558.txt">First 10 rows and triangle with rational entries</a>.
%H A093558 D. Yeliussizov, <a href="https://web.archive.org/web/20160927104833/http://www.kazntu.kz/sites/default/files/20121221ND_Eleusizov.pdf">Permutation Statistics on Multisets</a>, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]
%F A093558 a(n, m) = numerator(Fe(m, k), with Fe(m, k):=(m-k)*A(m, k)/(2*m*(2*m-1)) with Faulhaber numbers A(m, k):=A093556(m, k)/A093557(m, k) in Knuth's version. From the bottom of p. 288 of the 1993 Knuth reference.
%e A093558 Triangle begins:
%e A093558   [1];
%e A093558   [1,-1];
%e A093558   [1,-1,1];
%e A093558   [1,-1,1,-1];
%e A093558   [1,-5,17,-5,5]
%e A093558    ...
%e A093558 Numerators of:
%e A093558   [1/6];
%e A093558   [1/10,-1/30];
%e A093558   [1/14,-1/14,1/42];
%e A093558   [1/18,-1/9,1/10,-1/30];
%e A093558   [1/22,-5/33,17/66,-5/22,5/66];
%e A093558   ... (see Lang link)
%t A093558 a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Numerator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* _Jean-François Alcover_, Mar 03 2014 *)
%Y A093558 Cf. A093556/A093557, A093559 (denominators).
%K A093558 sign,frac,tabl,easy
%O A093558 2,12
%A A093558 _Wolfdieter Lang_, Apr 02 2004