cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093559 Triangle of denominators of coefficients of Faulhaber polynomials used for sums of even powers.

This page as a plain text file.
%I A093559 #22 Aug 09 2025 11:23:34
%S A093559 6,10,30,14,14,42,18,9,10,30,22,33,66,22,66,26,26,78,273,910,2730,30,
%T A093559 30,15,9,90,2,6,34,51,51,51,102,51,170,510,38,19,95,95,190,57,3990,
%U A093559 266,798,42,14,7,21,6,66,1386,693,110,330,46,138,46,23,230,690,345,23,230,46
%N A093559 Triangle of denominators of coefficients of Faulhaber polynomials used for sums of even powers.
%C A093559 The companion triangle with the numerators is A093558. See comment there.
%D A093559 Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser Verlag, Basel, Boston, Berlin, 1993, ch. 7, pp. 131-159.
%H A093559 A. Dzhumadil'daev and D. Yeliussizov, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Yeliussizov/dzhuma6.html">Power sums of binomial coefficients</a>, Journal of Integer Sequences, 16 (2013), Article 13.1.4.
%H A093559 D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1993-1197512-7">Johann Faulhaber and sums of powers</a>, Math. Comput. 203 (1993), 277-294.
%H A093559 D. Yeliussizov, <a href="https://web.archive.org/web/20160927104833/http://www.kazntu.kz/sites/default/files/20121221ND_Eleusizov.pdf">Permutation Statistics on Multisets</a>, Ph.D. Dissertation, Computer Science, Kazakh-British Technical University, 2012. [_N. J. A. Sloane_, Jan 03 2013]
%F A093559 a(n, m) = denominator(Fe(m, k), with Fe(m, k):=(m-k)*A(m, k)/(2*m*(2*m-1)) with Faulhaber numbers A(m, k):=A093556(m, k)/A093557(m, k) in Knuth's version. From the bottom of p. 288 of the 1993 Knuth reference.
%e A093559 Triangle begins:
%e A093559   [6];
%e A093559   [10,30];
%e A093559   [14,14,42];
%e A093559   [18,9,10,30]; ...
%e A093559 Denominators of:
%e A093559   [1/6];
%e A093559   [1/10,-1/30];
%e A093559   [1/14,-1/14,1/42];
%e A093559   [1/18,-1/9,1/10,-1/30];
%e A093559   ... (see W. Lang link in A093558.)
%t A093559 a[m_, k_] := (-1)^(m-k)*Sum[Binomial[2*m, m-k-j]*Binomial[m-k+j, j]*((m-k-j)/(m-k+j))*BernoulliB[m+k+j], {j, 0, m-k}]; t[m_, k_] := (m-k)*a[m, k]/(2*m*(2*m-1)); Table[t[m, k] // Denominator, {m, 2, 12}, {k, 0, m-2}] // Flatten (* _Jean-François Alcover_, Mar 03 2014 *)
%K A093559 nonn,frac,tabl,easy
%O A093559 2,1
%A A093559 _Wolfdieter Lang_, Apr 02 2004