cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093572 Greatest prime factor of Product(k+prime(k): 1<=k<=n).

This page as a plain text file.
%I A093572 #9 May 27 2016 12:22:07
%S A093572 3,5,5,11,11,19,19,19,19,19,19,19,19,19,31,31,31,79,79,79,79,101,101,
%T A093572 113,113,127,127,127,127,127,127,163,163,173,173,173,173,173,173,173,
%U A093572 173,223,223,223,223,223,223,271,271,271,271,271,271,271,271,271,271
%N A093572 Greatest prime factor of Product(k+prime(k): 1<=k<=n).
%C A093572 a(n) = A006530(A093570(n)) = A006530(A093571(n));
%C A093572 a(n) = Max(A076556(k): 1<=k<=n).
%H A093572 Harvey P. Dale, <a href="/A093572/b093572.txt">Table of n, a(n) for n = 1..1000</a>
%t A093572 PrimeFactors[n_Integer] := Flatten[ Table[ # [[1]], {1}] & /@ FactorInteger[n]]; Table[ PrimeFactors[ Product[k + Prime[k], {k, n}]][[ -1]], {n, 60}] (* _Robert G. Wilson v_, Apr 07 2004 *)
%t A093572 FactorInteger[#][[-1,1]]&/@FoldList[Times,Table[n+Prime[n],{n,60}]] (* _Harvey P. Dale_, May 27 2016 *)
%Y A093572 Cf. A014688, A092602.
%K A093572 nonn
%O A093572 1,1
%A A093572 _Reinhard Zumkeller_, Apr 01 2004
%E A093572 More terms from _Robert G. Wilson v_, Apr 07 2004