cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093577 Decimal expansion of (3/4)*sqrt(2).

This page as a plain text file.
%I A093577 #24 Feb 16 2025 08:32:53
%S A093577 1,0,6,0,6,6,0,1,7,1,7,7,9,8,2,1,2,8,6,6,0,1,2,6,6,5,4,3,1,5,7,2,7,3,
%T A093577 5,5,8,9,2,7,2,5,3,9,0,6,5,3,2,7,1,1,0,5,4,8,8,2,5,0,9,8,0,3,4,9,3,0,
%U A093577 4,9,3,5,8,8,4,6,5,8,0,2,7,9,1,3,7,7,9,0,6,5,0,7,4,5,7,3,1,1,7,9,5,5
%N A093577 Decimal expansion of (3/4)*sqrt(2).
%C A093577 Side length of Prince Rupert's cube: the largest cube that can be passed through a given unit cube (slightly larger than the given cube!).
%D A093577 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.14, p. 524.
%D A093577 Clifford A. Pickover, The Math Book, Sterling Publishing Co. (New York), 2009, p. 214.
%D A093577 D. J. E. Schrek, Prince Rupert's problem and its extension by Pieter Nieuwland, Scripta Math. 16 (1950), pp. 73-80 and 261-267.
%D A093577 David Wells, Penguin Dictionary of Curious and Interesting Geometry, 1991, p. 195.
%H A093577 G. C. Greubel, <a href="/A093577/b093577.txt">Table of n, a(n) for n = 1..10000</a>
%H A093577 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrinceRupertsCube.html">Prince Rupert's Cube</a>.
%H A093577 <a href="/index/Al#algebraic_02">Index entries for algebraic numbers, degree 2</a>.
%F A093577 Equals Sum_{k>=0} binomial(2*k,k)/36^k. - _Amiram Eldar_, Aug 04 2022
%e A093577 1.060660171779821286601266543157273558927253906532711...
%t A093577 RealDigits[3 Sqrt[2]/4, 10, 110][[1]] (* _Bruno Berselli_, Sep 20 2012 *)
%o A093577 (PARI) sqrt(9/8) \\ _Charles R Greathouse IV_, Nov 26 2014
%o A093577 (Magma) SetDefaultRealField(RealField(100)); Sqrt(9/8); // _G. C. Greubel_, Aug 17 2018
%K A093577 nonn,cons
%O A093577 1,3
%A A093577 _Eric W. Weisstein_, Apr 01 2004