This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093640 #31 Jul 16 2022 07:09:35 %S A093640 1,2,2,3,2,4,2,4,2,4,2,6,2,4,3,5,2,4,2,6,2,4,2,8,2,4,3,6,2,6,2,6,2,4, %T A093640 2,6,2,4,3,8,2,4,2,6,4,4,2,10,2,4,3,6,2,6,4,8,3,4,2,9,2,4,4,7,2,4,2,6, %U A093640 2,4,2,8,2,4,4,6,2,6,2,10,2,4,2,6,3,4,3,8,2,8,3,6,3,4,3,12,2,4,3,6,2 %N A093640 Number of divisors of n whose binary representation is contained in that of n. %H A093640 Reinhard Zumkeller, <a href="/A093640/b093640.txt">Table of n, a(n) for n = 1..10000</a> %H A093640 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>. %F A093640 a(n) > 1 for n>1. %F A093640 a(p) = 2 for primes p. %F A093640 a(A093641(n)) = A000005(A093641(n)). %F A093640 a(A093642(n)) < A000005(A093642(n)). %e A093640 n = 18: divisors of 18: 1 = '1', 2 = '10', 3 = '11', 6 = '110', 9 = '1001' and 18 = '10010': four of them are binary substrings of '10010', therefore a(18) = 4. %t A093640 a[n_] := DivisorSum[n, 1 &, StringContainsQ @@ IntegerString[{n, #}, 2] &]; Array[a, 100] (* _Amiram Eldar_, Jul 16 2022 *) %o A093640 (Haskell) %o A093640 import Data.List (isInfixOf) %o A093640 a093640 n = length [d | d <- [1..n], mod n d == 0, %o A093640 show (a007088 d) `isInfixOf` show (a007088 n)] %o A093640 -- _Reinhard Zumkeller_, Jan 22 2012 %o A093640 (Python) %o A093640 from sympy import divisors %o A093640 def a(n): %o A093640 s = bin(n)[2:] %o A093640 return sum(1 for d in divisors(n, generator=True) if bin(d)[2:] in s) %o A093640 print([a(n) for n in range(1, 102)]) # _Michael S. Branicky_, Jul 11 2022 %Y A093640 Cf. A000005, A078822, A007088, A093641, A093642. %K A093640 base,nonn %O A093640 1,2 %A A093640 _Reinhard Zumkeller_, Apr 07 2004