cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093652 Let a(1) = 1, a(2) = 2, a(3) = 7, a(4) = 15 and for n >= 5 set a(n) = (n*b(n) - b(n-2)) / 2, where b(n) = 4*b(n-2) - b(n-4) for n >= 5 and b(1) = 1, b(2) = 2, b(3) = 5, b(4) = 8.

Original entry on oeis.org

1, 2, 7, 15, 45, 86, 239, 433, 1157, 2034, 5307, 9151, 23497, 39974, 101467, 170913, 430089, 718946, 1796975, 2985775, 7422437, 12272502, 30373191, 50016721, 123327373, 202395986, 497484067, 814061151, 1995542913, 3257222726, 7965875891, 12973832257, 31663779857
Offset: 1

Views

Author

Harri Aaltonen, May 15 2004, Apr 12 2008

Keywords

Comments

a(n)/b(n) gives the ohm value of a ladder of unit resistors measured from opposite corners. The ladder is best described as a line of n squares, where every segment has a resistance of 1 ohm.
1/(n - 2*a(n)/b(n)) approaches 2 + sqrt(3) as n increases.

Crossrefs

Cf. A082630.

Programs

  • Maple
    a_list := proc(last) local B, C, k;
       B := [1,2,5, 8];
       C := [1,2,7,15];
       for k from 5 to last do
          B := [op(B), 4*B[k-2]-B[k-4]];
          C := [op(C), (k*B[k]-B[k-2])/2];
       od;
    C end:
    a_list(50); # After Harri Aaltonen, Peter Luschny, Mar 14 2020
  • Mathematica
    LinearRecurrence[{0, 8, 0, -18, 0, 8, 0, -1}, {1, 2, 7, 15, 45, 86, 239, 433}, 50] (* Jean-François Alcover, Oct 24 2023 *)

Formula

Conjecture: b(n) = A082630(n). If true, we can write a(n) = (n*A082630(n) - A082630(n-2)) / 2.
From Colin Barker, Dec 20 2019: (Start)
G.f.: x*(1 + 2*x - x^2 - x^3 + 7*x^4 + 2*x^5 - 3*x^6 - x^7) / (1 - 4*x^2 + x^4)^2.
a(n) = 8*a(n-2) - 18*a(n-4) + 8*a(n-6) - a(n-8) for n>8.
(End)

Extensions

Edited by Peter Luschny, Jun 14 2021