cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093658 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)]], with M(0) = [1].

This page as a plain text file.
%I A093658 #6 Oct 24 2017 12:56:33
%S A093658 1,1,1,1,0,1,2,1,1,1,1,0,0,0,1,2,1,0,0,1,1,2,0,1,0,1,0,1,6,2,2,1,2,1,
%T A093658 1,1,1,0,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,1,1,2,0,1,0,0,0,0,0,1,0,1,6,2,
%U A093658 2,1,0,0,0,0,2,1,1,1,2,0,0,0,1,0,0,0,1,0,0,0,1,6,2,0,0,2,1,0,0,2,1,0,0,1,1
%N A093658 Lower triangular matrix, read by rows, defined as the convergent of the concatenation of matrices using the iteration: M(n+1) = [[M(n),0*M(n)],[M(n)^2,M(n)]], with M(0) = [1].
%C A093658 Related to factorials, the incomplete gamma function (A010842) and the total number of arrangements of sets (A000522).
%C A093658 First column forms A093659, where A093659(2^n) = n! for n>=0.
%C A093658 Row sums form A093660, where A093660(2^n) = A000522(n) for n>=0.
%C A093658 Partial sums of the row sums form A093661, where A093661(2^n) = A010842(n) for n>=0.
%F A093658 T(2^n, 1) = n! for n>=0.
%e A093658 Let M(n) be the lower triangular matrix formed from the first 2^n rows.
%e A093658 To generate M(3) from M(2), take the matrix square of M(2):
%e A093658 [1,0,0,0]^2=[1,0,0,0]
%e A093658 [1,1,0,0]...[2,1,0,0]
%e A093658 [1,0,1,0]...[2,0,1,0]
%e A093658 [2,1,1,1]...[6,2,2,1]
%e A093658 and append M(2)^2 to the bottom left corner and M(2) to the bottom right:
%e A093658 [1],
%e A093658 [1,1],
%e A093658 [1,0,1],
%e A093658 [2,1,1,1],
%e A093658 .........
%e A093658 [1,0,0,0],[1],
%e A093658 [2,1,0,0],[1,1],
%e A093658 [2,0,1,0],[1,0,1],
%e A093658 [6,2,2,1],[2,1,1,1].
%e A093658 Repeating this process converges to triangle A093658.
%Y A093658 Cf. A000522, A010842, A093655, A093662.
%K A093658 nonn,tabl
%O A093658 1,7
%A A093658 _Paul D. Hanna_, Apr 08 2004