This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093669 #11 Nov 14 2021 10:15:33 %S A093669 11,14,17,19,20,27,32,34,36,43,46,49,52,64,67,73,82,97,100,142,148, %T A093669 163,193 %N A093669 Numbers having a unique representation as ab+ac+bc, with 0 < a < b < c. %C A093669 Are there more terms? %C A093669 No more terms < 10^6. - _Joerg Arndt_, Oct 01 2017 %D A093669 See A025052. %e A093669 11 is on the list because 11 = 1*2+1*3+2*3. %t A093669 oneSol={}; Do[lim=Ceiling[(n-2)/3]; cnt=0; Do[If[n>a*b && Mod[n-a*b, a+b]==0 && Quotient[n-a*b, a+b]>b, cnt++; If[cnt>1, Break[]]], {a, 1, lim-1}, {b, a+1, lim}]; If[cnt==1, AppendTo[oneSol, n]], {n, 10000}]; oneSol %o A093669 (Python) %o A093669 from collections import Counter %o A093669 def aupto(N): %o A093669 acount = Counter() %o A093669 for i in range(1, N-1): %o A093669 for j in range(i+1, N//i + 1): %o A093669 p, s = i*j, i+j %o A093669 for k in range(j+1, (N-p)//s + 1): %o A093669 acount.update([p + s*k]) %o A093669 return sorted([k for k in acount if acount[k] == 1]) %o A093669 print(aupto(10**5)) # _Michael S. Branicky_, Nov 14 2021 %Y A093669 Cf. A025052, A025058, A025060. %Y A093669 Cf. A000926 (numbers not of the form ab+ac+bc, 0<a<b<c). %K A093669 nonn,more %O A093669 1,1 %A A093669 _T. D. Noe_, Apr 08 2004