A093678 Sequence contains no 3-term arithmetic progression, starting with 1, 7.
1, 7, 8, 10, 11, 16, 17, 20, 28, 34, 35, 37, 38, 43, 44, 47, 82, 88, 89, 91, 92, 97, 98, 101, 109, 115, 116, 118, 119, 124, 125, 128, 244, 250, 251, 253, 254, 259, 260, 263, 271, 277, 278, 280, 281, 286, 287, 290, 325, 331, 332, 334, 335, 340, 341, 344, 352
Offset: 1
Links
Programs
-
Maple
N:= 1000: # to get all terms <= N V:= Vector(N,1): A[1]:= 1: A[2]:= 7: k:= 8; for n from 3 while k < N do for k from 1 to n-2 do p:= 2*A[n-1]-A[k]; if p <= N then V[p]:= 0 fi od: for k from A[n-1]+1 to N do if V[k] = 1 then A[n]:= k; nmax:= n; break fi; od; od: seq(A[i],i=1..nmax); # Robert Israel, May 07 2018
-
Mathematica
a[n_] := Sum[(1/2)(3^IntegerExponent[k, 2]+1), {k, 1, n-1}] + (1/8)( 12(-1)^n - 7Sin[n Pi/2] + 7Sin[3n Pi/2] - Sin[(n+1)Pi/4] + Sin[(5n+1) Pi/4] + Cos[n Pi/2] + Cos[3n Pi/2] + Cos[n Pi/4] + Cos[3n Pi/4] + Cos[5n Pi/4] + Cos[7n Pi/4] + Cos[(3n+1)Pi/4] - Cos[(7n+1)Pi/4] + 38); Array[a, 60] (* Jean-François Alcover, Mar 22 2019 *)
Formula
a(n) = (Sum_{k=1..n-1} (3^A007814(k) + 1)/2) + f(n), with f(n) an 8-periodic function with values {1, 6, 5, 6, 2, 6, 5, 7, ...}, as proved by Lawrence Sze.
Comments