cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093678 Sequence contains no 3-term arithmetic progression, starting with 1, 7.

Original entry on oeis.org

1, 7, 8, 10, 11, 16, 17, 20, 28, 34, 35, 37, 38, 43, 44, 47, 82, 88, 89, 91, 92, 97, 98, 101, 109, 115, 116, 118, 119, 124, 125, 128, 244, 250, 251, 253, 254, 259, 260, 263, 271, 277, 278, 280, 281, 286, 287, 290, 325, 331, 332, 334, 335, 340, 341, 344, 352
Offset: 1

Views

Author

Ralf Stephan, Apr 09 2004

Keywords

Comments

a(1)=1, a(2)=7; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression.

Crossrefs

Row 3 of array in A093682.

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    V:= Vector(N,1):
    A[1]:= 1: A[2]:= 7: k:= 8;
    for n from 3 while k < N do
      for k from 1 to n-2 do
        p:= 2*A[n-1]-A[k];
        if p <= N then V[p]:= 0 fi
      od:
      for k from A[n-1]+1 to N do
        if V[k] = 1 then A[n]:= k; nmax:= n; break fi;
      od;
    od:
    seq(A[i],i=1..nmax); # Robert Israel, May 07 2018
  • Mathematica
    a[n_] := Sum[(1/2)(3^IntegerExponent[k, 2]+1), {k, 1, n-1}] + (1/8)( 12(-1)^n - 7Sin[n Pi/2] + 7Sin[3n Pi/2] - Sin[(n+1)Pi/4] + Sin[(5n+1) Pi/4] + Cos[n Pi/2] + Cos[3n Pi/2] + Cos[n Pi/4] + Cos[3n Pi/4] + Cos[5n Pi/4] + Cos[7n Pi/4] + Cos[(3n+1)Pi/4] - Cos[(7n+1)Pi/4] + 38); Array[a, 60] (* Jean-François Alcover, Mar 22 2019 *)

Formula

a(n) = (Sum_{k=1..n-1} (3^A007814(k) + 1)/2) + f(n), with f(n) an 8-periodic function with values {1, 6, 5, 6, 2, 6, 5, 7, ...}, as proved by Lawrence Sze.