cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093682 Array T(m,n) by antidiagonals: nonarithmetic-3-progression sequences with simple closed forms.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 5, 4, 4, 1, 10, 6, 5, 7, 1, 11, 10, 8, 8, 10, 1, 13, 12, 10, 10, 11, 19, 1, 14, 13, 13, 11, 13, 20, 28, 1, 28, 15, 14, 16, 14, 22, 29, 55, 1, 29, 28, 17, 17, 20, 23, 31, 56, 82, 1, 31, 30, 28, 20, 22, 28, 32, 58, 83, 163, 1, 32, 31, 31, 28, 23, 29, 37, 59, 85
Offset: 0

Views

Author

Ralf Stephan, Apr 09 2004

Keywords

Comments

The nonarithmetic-3-progression sequences starting with a(1)=1, a(2)=1+3^m or 1+2*3^m, m >= 0, seem to have especially simple 'closed' forms. None of these formulas have been proved, however.
T(m,1)=1, T(m,2) = 1 + (1 + [m even])*3^floor(m/2) = 1 + A038754(m), m >= 0, n > 0; T(m,n) is least k such that no three terms of T(m,1), T(m,2), ..., T(m,n-1), k form an arithmetic progression.

Examples

			Array begins:
  1,  2,  4,  5, 10, 11, 13, ...
  1,  3,  4,  6, 10, 12, 13, ...
  1,  4,  5,  8, 10, 13, 14, ...
  1,  7,  8, 10, 11, 16, 17, ...
  1, 10, 11, 13, 14, 20, 22, ...
  ...
		

Crossrefs

Column 2 is 1+A038754. Cf. A092482, A033158.

Formula

T(m, n) = (Sum_{k=1..n-1} (3^A007814(k) + 1)/2) + f(n), with f(n) a P-periodic function, where P <= 2^floor((m+3)/2) (conjectured and checked up to m=13, n=1000).
The formula implies that T(m, n) = b(n-1) where b(2n) = 3b(n) + p(n), b(2n+1) = 3b(n) + q(n), with p, q sequences generated by rational o.g.f.s.