This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093683 #49 Jan 24 2024 08:01:05 %S A093683 4,25,174,1270,10250,86027,738597,6497407,58047180,524733511, %T A093683 4789919653,44073509102,408231310520 %N A093683 Number of pairs of twin primes <= 10^n-th prime. %C A093683 This sequence is >= the values of pi(10^n): 4, 25, 168, 1229, ... in A006880. %C A093683 a(0) = 0. - _Eduard Roure Perdices_, Dec 23 2022 %D A093683 Enoch Haga, "Wandering through a prime number desert," Table 6, in Exploring prime numbers on your PC and the Internet, 2001 (ISBN 1-885794-17-7). %H A093683 Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, <a href="https://arxiv.org/abs/1807.08899">The Bateman-Horn Conjecture: Heuristics, History, and Applications</a>, arXiv:1807.08899 [math.NT], 2018-2019. See Table 5 p. 40. %H A093683 Thomas R. Nicely, <a href="https://faculty.lynchburg.edu/~nicely/counts.html">Twin prime count</a>. %H A093683 <a href="/index/Pri#primepop">Index entries for sequences related to numbers of primes in various ranges</a> %F A093683 Count twin primes <= p_{10^n}: 10th prime, 100th prime, etc. %e A093683 a(1) = 4 because there are 4 twin primes <= 29, the 10th prime: (3,5), (5,7), (11,13), and (17,19). (29,31) is not counted because it is not entirely <= 29. %t A093683 NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; c = 0; p = q = 1; Do[l = Prime[10^n]; While[q <= l, If[p + 2 == q, c++ ]; p = q; q = NextPrim[p]]; Print[c], {n, 12}] (* _Robert G. Wilson v_, Apr 10 2004 *) %o A093683 (Python) %o A093683 from sympy import prime, sieve # use primerange for larger terms %o A093683 def afind(terms): %o A093683 c, prevp = 0, 1 %o A093683 for n in range(1, terms+1): %o A093683 for p in sieve.primerange(prevp+1, prime(10**n)+1): %o A093683 if prevp == p - 2: c += 1 %o A093683 prevp = p %o A093683 print(c, end=", ") %o A093683 afind(6) # _Michael S. Branicky_, Apr 25 2021 %Y A093683 See A049035 for another version. - _R. J. Mathar_, Sep 05 2008 %Y A093683 Cf. A006880, A007508. %K A093683 nonn,more %O A093683 1,1 %A A093683 _Enoch Haga_, Apr 09 2004 %E A093683 a(9) from _Michael S. Branicky_, Apr 25 2021 %E A093683 a(10) from _Eduard Roure Perdices_, May 08 2021 %E A093683 a(11) from _Eduard Roure Perdices_, Feb 03 2022 %E A093683 a(12) from _Eduard Roure Perdices_, Dec 23 2022 %E A093683 a(13) from _Eduard Roure Perdices_, Jan 24 2024