A093687 Numbers k such that the total number of 1's in the binary expansion of all the divisors of k sets a new record.
1, 2, 3, 6, 12, 18, 24, 30, 60, 90, 120, 180, 252, 360, 420, 504, 540, 630, 756, 840, 1080, 1260, 1980, 2520, 3780, 5040, 6300, 7560, 12600, 13860, 15120, 21420, 25200, 27720, 32760, 41580, 42840, 49140, 55440, 65520, 81900, 83160, 98280, 128520, 138600
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..120
Crossrefs
Cf. A093653.
Programs
-
Mathematica
a[n_] := Plus @@ DigitCount[Divisors[n], 2, 1]; am = -1; c = 0; seq={}; Do[a1 = a[n]; If[a1 > am, am = a1; c++; AppendTo[seq, n]], {n, 1, 10^4}]; seq (* Amiram Eldar, Dec 17 2019 *)
-
Python
# uses imports and definitions in A093653 from itertools import count, islice def f(n): return A093653(n) def agen(r=0): yield from ((m, r:=fm)[0] for m in count(1) if (fm:=f(m))>r) print(list(islice(agen(), 45))) # Michael S. Branicky, Feb 15 2023