cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093687 Numbers k such that the total number of 1's in the binary expansion of all the divisors of k sets a new record.

Original entry on oeis.org

1, 2, 3, 6, 12, 18, 24, 30, 60, 90, 120, 180, 252, 360, 420, 504, 540, 630, 756, 840, 1080, 1260, 1980, 2520, 3780, 5040, 6300, 7560, 12600, 13860, 15120, 21420, 25200, 27720, 32760, 41580, 42840, 49140, 55440, 65520, 81900, 83160, 98280, 128520, 138600
Offset: 1

Views

Author

Jason Earls, May 16 2004

Keywords

Crossrefs

Cf. A093653.

Programs

  • Mathematica
    a[n_] := Plus @@ DigitCount[Divisors[n], 2, 1]; am = -1; c = 0; seq={}; Do[a1 = a[n]; If[a1 > am, am = a1; c++; AppendTo[seq, n]], {n, 1, 10^4}]; seq (* Amiram Eldar, Dec 17 2019 *)
  • Python
    # uses imports and definitions in A093653
    from itertools import count, islice
    def f(n): return A093653(n)
    def agen(r=0): yield from ((m, r:=fm)[0] for m in count(1) if (fm:=f(m))>r)
    print(list(islice(agen(), 45))) # Michael S. Branicky, Feb 15 2023