A093688 Numbers m such that all divisors of m, excluding the divisor 1, have an even number of 1's in their binary expansions.
1, 3, 5, 9, 15, 17, 23, 27, 29, 43, 45, 51, 53, 71, 83, 85, 89, 101, 113, 129, 135, 139, 149, 153, 159, 163, 197, 215, 249, 255, 257, 263, 267, 269, 277, 281, 293, 303, 311, 317, 337, 347, 349, 353, 359, 373, 383, 387, 389, 401, 417, 447, 449, 459, 461, 467, 479
Offset: 1
Examples
51 is in the sequence because, excluding 1, its divisors are 3, 17 and 51. In binary: 11, 10001, 110011 all have an even number of 1's.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
okQ[n_] := AllTrue[Rest[Divisors[n]], EvenQ[Total[IntegerDigits[#, 2]]]&]; Select[Range[500], okQ] (* Jean-François Alcover, Dec 06 2015 *)
-
PARI
is(n)=sumdiv(n,d,hammingweight(d)%2)==1 \\ Charles R Greathouse IV, Mar 28 2013
-
Python
from sympy import divisors def c(n): return n == 1 or bin(n).count("1")&1 == 0 def ok(n): return n > 0 and all(c(d) for d in divisors(n, generator=True)) print([k for k in range(480) if ok(k)]) # Michael S. Branicky, Jul 24 2022
Extensions
a(1) added by Charles R Greathouse IV, Mar 28 2013
Comments