cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093700 Number of 9's immediately following the decimal point in the expansion of (3+sqrt(8))^n.

This page as a plain text file.
%I A093700 #24 Sep 10 2023 01:50:39
%S A093700 0,1,2,3,3,4,5,6,6,7,8,9,9,10,11,12,13,13,14,15,16,16,17,18,19,19,20,
%T A093700 21,22,22,23,24,25,26,26,27,28,29,29,30,31,32,32,33,34,35,35,36,37,38,
%U A093700 39,39,40,41,42,43,44,45,45,46,47,48,48,49,50,51,52,52,53,54,55,55,56,57
%N A093700 Number of 9's immediately following the decimal point in the expansion of (3+sqrt(8))^n.
%C A093700 Number of 0's immediately following the decimal point in the expansion of (3-sqrt(8))^n.
%H A093700 Henri Cohen, Fernando Rodriguez Villegas, and Don Zagier, <a href="https://www.emis.de/journals/EM/expmath/volumes/9/9.html">Convergence Acceleration of Alternating Series</a>, Experiment. Math. Volume 9, Issue 1 (2000), 3-12, Project Euclid - Cornell Univ (see Proposition 1).
%H A093700 Robbert Fokkink, <a href="https://arxiv.org/abs/2309.01644">The Pell Tower and Ostronometry</a>, arXiv:2309.01644 [math.CO], 2023.
%H A093700 Math Forum, <a href="http://mathforum.org/library/drmath/view/55927.html">Triangular Numbers That are Perfect Squares</a>
%H A093700 Math Pages, <a href="http://www.mathpages.com/home/kmath305/kmath305.htm">On m = sqrt(sqrt(n) + sqrt(kn+1))</a> [Wrong link]
%H A093700 Robert Simms, <a href="https://web.archive.org/web/20080829235933/http://www.math.clemson.edu/~simms/neat/math/pyth/npyth.html">Using counting numbers to generate Pythagorean triples</a>
%F A093700 Roughly, floor(3*n/4)
%e A093700 Let n=10, (3+sqrt(8))^10= 45239073.9999999778... (the fractional part starts with seven 9's), so the 10th element in this sequence is 7.
%e A093700 The 132nd element is 100. The 1000th element is 765. The 1307th element is 1000.
%e A093700 The arrangement of repeating elements are like A074184 (Index of the smallest power of n >= n!) and A076539 (Numerators a(n) of fractions slowly converging to pi) and A080686 (Number of 19-smooth numbers <= n).
%t A093700 For[n = 1, n < 999, n++, Block[{$MaxExtraPrecision = 50*n}, Print[ -Floor[Log[10, 1 - N[FractionalPart[(3 + 2Sqrt[2])^n], n]]] - 1]]]
%t A093700 f[n_] := Block[{}, -MantissaExponent[(3 - Sqrt[8])^n][[2]]]; Table[ f[n], {n, 75}] (* _Robert G. Wilson v_, Apr 10 2004 *)
%Y A093700 Cf. A003499, A050608, A080686, A076539, A074184.
%K A093700 nonn,base
%O A093700 1,3
%A A093700 _Marvin Ray Burns_, Apr 10 2004