cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093729 Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of tournament sequences.

This page as a plain text file.
%I A093729 #28 Aug 27 2024 22:20:10
%S A093729 1,0,1,0,1,1,0,2,2,1,0,7,7,3,1,0,41,41,15,4,1,0,397,397,123,26,5,1,0,
%T A093729 6377,6377,1656,274,40,6,1,0,171886,171886,36987,4721,515,57,7,1,0,
%U A093729 7892642,7892642,1391106,134899,10810,867,77,8,1,0,627340987,627340987,89574978,6501536,376175,21456,1351,100,9,1
%N A093729 Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of tournament sequences.
%C A093729 Column 1, of array T and antidiagonals, equals A008934, which is the number of tournament sequences.
%C A093729 A tournament sequence is an increasing sequence of positive integers (t_1,t_2,...) such that t_1 = 1 and t_{i+1} <= 2*t_i, where integer k>1.
%H A093729 G. C. Greubel, <a href="/A093729/b093729.txt">Antidiagonals n = 0..50, flattened</a>
%H A093729 M. Cook and M. Kleber, <a href="https://doi.org/10.37236/1522">Tournament sequences and Meeussen sequences</a>, Electronic J. Comb. 7 (2000), #R44.
%H A093729 Michael Somos, <a href="https://math.stackexchange.com/q/477910">A functional power series equation</a>, Mathematics StackExchange answer.
%F A093729 T(0, k)=1 for k>=0, T(n, 0)=0 for n>=1; else T(n, k) = T(n, k-1) - T(n-1, k) + T(n-1, 2*k-1) + T(n-1, 2*k) for k<=n; else T(n, k) = Sum_{j=1..n+1} (-1)^(j-1)*C(n+1, j)*T(n, k-j) for k>n (Cook-Kleber).
%F A093729 Column k of T equals column 0 of the matrix k-th power of triangle A097710, which satisfies the matrix recurrence: A097710(n, k) = [A097710^2](n-1, k-1) + [A097710^2](n-1, k) for n>k>=0.
%F A093729 Sum_{k=0..n} T(n-k, k) = A093730(n) (antidiagonal row sums).
%e A093729 Array begins:
%e A093729   1,      1,       1,       1,       1,      1,      1,     1,     1, ...],
%e A093729   0,      1,       2,       3,       4,      5,      6,     7,     8, ...],
%e A093729   0,      2,       7,      15,      26,     40,     57,    77,   100, ...],
%e A093729   0,      7,      41,     123,     274,    515,    867,  1351,  1988, ...],
%e A093729   0,     41,     397,    1656,    4721,  10810,  21456, 38507, 64126, ...],
%e A093729   0,    397,    6377,   36987,  134899, 376175, 880032, .................],
%e A093729   0,   6377,  171886, 1391106, 6501536, ...],
%e A093729   0, 171886, 7892642, .....................];
%e A093729 Antidiagonals begin as:
%e A093729   1;
%e A093729   0,      1;
%e A093729   0,      1,      1;
%e A093729   0,      2,      2,     1;
%e A093729   0,      7,      7,     3,    1;
%e A093729   0,     41,     41,    15,    4,   1;
%e A093729   0,    397,    397,   123,   26,   5,   1;
%e A093729   0,   6377,   6377,  1656,  274,  40,   6,   1;
%e A093729   0, 171886, 171886, 36987, 4721, 515,  57,   7,   1;
%t A093729 t[n_?Negative, _] = 0; t[0, _] = 1; t[n_, k_] /; k <= n := t[n, k] = t[n, k - 1] - t[n-1, k] + t[n - 1, 2 k - 1] + t[n - 1, 2 k]; t[n_, k_] := t[n, k] = Sum[(-1)^(j - 1)*Binomial[n + 1, j]*t[n, k - j], {j, 1, n + 1}]; Flatten[Table[t[i - k, k - 1], {i, 10}, {k, i}]] (* _Jean-François Alcover_, May 31 2011, after PARI prog. *)
%o A093729 (PARI) {T(n,k)=if(n<0,0,if(n==0,1,if(k==0,0, if(k<=n,T(n,k-1)-T(n-1,k)+T(n-1,2*k-1)+T(n-1,2*k), sum(j=1,n+1, (-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
%o A093729 (PARI) {a(n, m) = my(A=1); for(k=1, n, A = (A - q^k * r * subst( subst(A, q, q^2), r, r^2)) / (1-q)); subst(subst(A, r, q^(m-1)), q, 1)}; /* _Michael Somos_, Jun 19 2017 */
%o A093729 (SageMath)
%o A093729 @CachedFunction
%o A093729 def T(n, k):
%o A093729     if n<0: return 0
%o A093729     elif n==0: return 1
%o A093729     elif k==0: return 0
%o A093729     elif k<n+1: return T(n,k-1) - T(n-1,k) + T(n-1,2*k-1) + T(n-1,2*k)
%o A093729     else: return sum((-1)^(j-1)*binomial(n+1,j)*T(n, k-j) for j in range(1,n+2))
%o A093729 def A093729(n,k): return T(n-k,k)
%o A093729 flatten([[A093729(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Feb 22 2024
%Y A093729 Cf. A008934, A097710, A113080, A113081, A113092, A113103.
%Y A093729 Cf. A008934 (column k=1 of array and antidiagonals), A093730 (antidiagonal row sums).
%K A093729 nonn,tabl
%O A093729 0,8
%A A093729 _Paul D. Hanna_, Apr 14 2004; revised Oct 14 2005