cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093730 Antidiagonal sums of triangle A093729, which enumerates the number of nodes in the tree of tournament sequences.

This page as a plain text file.
%I A093730 #18 Feb 22 2024 09:05:14
%S A093730 1,1,2,5,18,102,949,14731,386060,17323052,1351157580,185867701560,
%T A093730 45682244004244,20283964291276804,16423005586691362832,
%U A093730 24434416299840231799694,67236458264587977465709983
%N A093730 Antidiagonal sums of triangle A093729, which enumerates the number of nodes in the tree of tournament sequences.
%C A093730 Related to A008934 (the number of tournament sequences).
%H A093730 G. C. Greubel, <a href="/A093730/b093730.txt">Table of n, a(n) for n = 0..86</a>
%H A093730 M. Cook and M. Kleber, <a href="https://doi.org/10.37236/1522">Tournament sequences and Meeussen sequences</a>, Electronic J. Comb. 7 (2000), #R44.
%F A093730 a(n) = Sum_{k=0..n} A093729(n-k, k).
%t A093730 T[n_, k_] := T[n, k] = If[n<0, 0, If[n==0, 1, If[k==0, 0, If[k<=n, T[n, k-1] - T[n-1, k] + T[n-1, 2*k-1] + T[n-1, 2*k], Sum[(-1)^(j-1) * Binomial[n+1, j]*T[n, k-j], {j, 1, n+1}]]]]]; a[n_] := Sum[T[n-k, k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* _Jean-François Alcover_, Oct 06 2016, translated from PARI *)
%o A093730 (PARI) {T(n,k)=if(n<0,0,if(n==0,1,if(k==0,0, if(k<=n,T(n,k-1)-T(n-1,k)+T(n-1,2*k-1)+T(n-1,2*k), sum(j=1,n+1, (-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
%o A093730 a(n)=sum(k=0,n,T(n-k,k))
%o A093730 (SageMath)
%o A093730 @CachedFunction
%o A093730 def T(n, k): # T = A093729
%o A093730     if n<0: return 0
%o A093730     elif n==0: return 1
%o A093730     elif k==0: return 0
%o A093730     elif k<n+1: return T(n,k-1) - T(n-1,k) + T(n-1,2*k-1) + T(n-1,2*k)
%o A093730     else: return sum((-1)^(j-1)*binomial(n+1,j)*T(n, k-j) for j in range(1,n+2))
%o A093730 def A093730(n): return sum(T(n-k,k) for k in range(n+1))
%o A093730 [A093730(n) for n in range(31)] # _G. C. Greubel_, Feb 22 2024
%Y A093730 Cf. A008934, A093729.
%K A093730 nonn
%O A093730 0,3
%A A093730 _Paul D. Hanna_, Apr 14 2004