This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093739 #16 Aug 14 2018 09:05:58 %S A093739 0,1,15,101,773,5569,42352,334180,2695109,22160841,185402143, %T A093739 1573331564,13515180171,117333792953,1028087693781,9081524454631, %U A093739 80799078096971,723494891844589 %N A093739 Number of prime pairs below 10^n having a difference of 8. %H A093739 Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a> %H A093739 T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060. %e A093739 a(3) = 15 because there are 15 prime gaps of 8 below 10^3. %o A093739 (UBASIC) %o A093739 20 N=1:dim T(34); %o A093739 30 A=nxtprm(N); %o A093739 40 N=A; %o A093739 50 B=nxtprm(N); %o A093739 60 D=B-A; %o A093739 70 for x=2 to 34 step 2; %o A093739 80 if D=X and B<10^2+1 then T(X)=T(X)+1; %o A093739 90 next X; %o A093739 100 if B>10^2+1 then 140; %o A093739 110 B=A; %o A093739 120 N=N+1; %o A093739 130 goto 30; %o A093739 140 for x=2 to 34 step 2; %o A093739 150 print T(X);, %o A093739 160 next %o A093739 ## (This program simultaneously finds values from 2 to 34 - if gap=2 add 1- adjust lines 80 and 100 for desired 10^n) %Y A093739 Cf. A007508, A093738, A093740. %K A093739 nonn,more %O A093739 1,3 %A A093739 _Enoch Haga_, Apr 15 2004 %E A093739 a(10)-a(13) from _Washington Bomfim_, Jun 20 2012 %E A093739 a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018