This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093740 #18 Aug 14 2018 20:57:28 %S A093740 0,0,16,119,916,7079,54431,430016,3484767,28764495,241298621, %T A093740 2052293026,17663498098,153590992984,1347587381486,11917605558274, %U A093740 106139298948562,951243890034661 %N A093740 Number of prime pairs below 10^n having a difference of 10. %H A093740 Siegfried "Zig" Herzog, <a href="http://zigherzog.net/primes/index.html#compare">Frequency of Occurrence of Prime Gaps</a> %H A093740 T. Oliveira e Silva, S. Herzog, and S. Pardi, <a href="http://dx.doi.org/10.1090/S0025-5718-2013-02787-1">Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18</a>, Math. Comp., 83 (2014), 2033-2060. %e A093740 a(3) = 16 because there are 16 prime gaps of 10 below 10^3. %o A093740 (UBASIC) %o A093740 20 N=1:dim T(34); %o A093740 30 A=nxtprm(N); %o A093740 40 N=A; %o A093740 50 B=nxtprm(N); %o A093740 60 D=B-A; %o A093740 70 for x=2 to 34 step 2; %o A093740 80 if D=X and B<10^2+1 then T(X)=T(X)+1; %o A093740 90 next X; %o A093740 100 if B>10^2+1 then 140; %o A093740 110 B=A; %o A093740 120 N=N+1; %o A093740 130 goto 30; %o A093740 140 for x=2 to 34 step 2; %o A093740 150 print T(X);, %o A093740 160 next %o A093740 ## (This program simultaneously finds values from 2 to 34 - if gap=2 add 1- adjust lines 80 and 100 for desired 10^n) %Y A093740 Cf. A007508, A093739, A093741. %K A093740 nonn,more %O A093740 1,3 %A A093740 _Enoch Haga_, Apr 15 2004 %E A093740 a(10)-a(13) from _Washington Bomfim_, Jun 20 2012 %E A093740 a(14)-a(18) from S. Herzog's website added by _Giovanni Resta_, Aug 14 2018