cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093768 Positive first differences of the rows of triangle A088459, which enumerates symmetric Dyck paths.

This page as a plain text file.
%I A093768 #15 Feb 03 2025 12:06:19
%S A093768 1,1,1,1,2,3,1,3,8,6,1,4,15,20,20,1,5,24,45,75,50,1,6,35,84,189,210,
%T A093768 175,1,7,48,140,392,588,784,490,1,8,63,216,720,1344,2352,2352,1764,1,
%U A093768 9,80,315,1215,2700,5760,7560,8820,5292,1,10,99,440,1925,4950,12375,19800
%N A093768 Positive first differences of the rows of triangle A088459, which enumerates symmetric Dyck paths.
%C A093768 Suggested by Bozydar Dubalski (slawb(AT)atr.bydgoszcz.pl). Related to walks on a square lattice: main diagonal forms A005558, secondary diagonals form A005559, A005560, A005561, A005562, A005563.
%C A093768 Apparently row-reversed version of A052174. - _R. J. Mathar_, Feb 03 2025
%H A093768 G. C. Greubel, <a href="/A093768/b093768.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F A093768 T(n, k) = C(n+1, ceiling(k/2))*C(n, floor(k/2)) - C(n+1, ceiling((k-1)/2))*C(n, floor((k-1)/2)) for n>=k>=0.
%e A093768 1;
%e A093768 1, 1;
%e A093768 1, 2, 3;
%e A093768 1, 3, 8, 6;
%e A093768 1, 4, 15, 20, 20;
%e A093768 1, 5, 24, 45, 75, 50;
%e A093768 1, 6, 35, 84, 189, 210, 175;
%p A093768 A093768 := proc(n,k)
%p A093768     if k = 0 then
%p A093768         A088459(n,k);
%p A093768     else
%p A093768         A088459(n,k)-A088459(n,k-1);
%p A093768     end if;
%p A093768 end proc:
%p A093768 seq(seq(A093768(n,k),k=0..n-1),n=1..10) ; # _R. J. Mathar_, Apr 02 2017
%t A093768 T[n_, k_] := Binomial[n + 1, Ceiling[k/2]]*Binomial[n, Floor[k/2]] - Binomial[n + 1, Ceiling[(k - 1)/2]]*Binomial[n, Floor[(k - 1)/2]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _G. C. Greubel_, Oct 25 2017 *)
%o A093768 (PARI) {T(n,k) =binomial(n+1,ceil(k/2))*binomial(n,floor(k/2)) -binomial(n+1,ceil((k-1)/2))*binomial(n,floor((k-1)/2))}
%Y A093768 Cf. A088459, A005558-A005562, A005563 (column 3), A005564 (column 4), A005565 (column 5), A005566 (row sums).
%K A093768 nonn,tabl
%O A093768 0,5
%A A093768 _Paul D. Hanna_, Apr 16 2004