This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093771 #9 Oct 19 2015 13:21:56 %S A093771 4,8,9,25,27,32,36,49,100,121,125,128,144,169,196,216,225,243,289,324, %T A093771 343,361,400,441,484,529,576,676,784,841,900,961,1000,1089,1156,1225, %U A093771 1331,1369,1444,1521,1600,1681,1728,1764,1849,1936,2025,2048,2116,2187 %N A093771 Perfect powers for which the exponent is a prime number: solutions to {A051409(x) is prime}. %C A093771 A010051(A025479(n)) = 1. - _Reinhard Zumkeller_, Mar 28 2014 %H A093771 Reinhard Zumkeller, <a href="/A093771/b093771.txt">Table of n, a(n) for n = 1..10000</a> %F A093771 GCD of prime-exponents in canonical factorization of n is prime. %e A093771 All 2-,3-,5-,7th ... powers are here, 4-,6-,8th etc. powers are excluded %e A093771 from A001597. %t A093771 ffi[x_] :=Flatten[FactorInteger[x]] ep[x_] :=Table[Part[ffi[x], 2*w], {w, 1, lf[x]}] lf[x_] :=Length[FactorInteger[x]] Do[If[PrimeQ[Apply[GCD, ep[n]]], Print[n]], {n, 2, 10000}] %o A093771 (Haskell) %o A093771 a093771 n = a093771_list !! (n-1) %o A093771 a093771_list = [a001597 x | x <- [2..], a010051 (a025479 x) == 1] %o A093771 -- _Reinhard Zumkeller_, Mar 28 2014 %o A093771 (PARI) is(n)=isprime(ispower(n)) \\ _Charles R Greathouse IV_, Oct 19 2015 %Y A093771 Cf. A001157, A025479, A052409, A001597. %K A093771 nonn %O A093771 1,1 %A A093771 _Labos Elemer_, Apr 19 2004