cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093773 a(n) is the smallest integer at which the value of the "truncated Mertens function" (= A088004) equals the n-th prime number.

This page as a plain text file.
%I A093773 #12 Mar 19 2017 01:02:05
%S A093773 6,10,15,22,38,51,62,77,91,123,134,159,203,206,214,253,302,305,330,
%T A093773 341,365,395,454,489,526,542,545,554,566,586,723,753,781,794,866,870,
%U A093773 914,933,966,1059,1138,1141,1198,1202,1214,1219,1293,1351,1383,1387,1403
%N A093773 a(n) is the smallest integer at which the value of the "truncated Mertens function" (= A088004) equals the n-th prime number.
%C A093773 Truncated Mertens function = summatory Moebius when argument runs through nonprimes. See A088004(n) = A002321(n) + A000720(n).
%F A093773 a(n) = A093772(prime(n)) = A093772(A000040(n)). Solutions to min{x; A002321(x) + A000720(x) = A000040(n) = prime(n)} = a(n).
%t A093773 mer[x_] :=mer[x]=mer[x-1]+MoebiusMu[x]; mer[0]=0;$RecursionLimit=1000; t=Table[mer[w]+PrimePi[w], {w, 1, 1000}] Table[Min[Flatten[Position[t, Prime[j]]]], {j, 1, 200}]
%Y A093773 Cf. A000720, A002321, A008682, A059071, A088004, A093772.
%K A093773 nonn
%O A093773 1,1
%A A093773 _Labos Elemer_, Apr 28 2004