This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093773 #12 Mar 19 2017 01:02:05 %S A093773 6,10,15,22,38,51,62,77,91,123,134,159,203,206,214,253,302,305,330, %T A093773 341,365,395,454,489,526,542,545,554,566,586,723,753,781,794,866,870, %U A093773 914,933,966,1059,1138,1141,1198,1202,1214,1219,1293,1351,1383,1387,1403 %N A093773 a(n) is the smallest integer at which the value of the "truncated Mertens function" (= A088004) equals the n-th prime number. %C A093773 Truncated Mertens function = summatory Moebius when argument runs through nonprimes. See A088004(n) = A002321(n) + A000720(n). %F A093773 a(n) = A093772(prime(n)) = A093772(A000040(n)). Solutions to min{x; A002321(x) + A000720(x) = A000040(n) = prime(n)} = a(n). %t A093773 mer[x_] :=mer[x]=mer[x-1]+MoebiusMu[x]; mer[0]=0;$RecursionLimit=1000; t=Table[mer[w]+PrimePi[w], {w, 1, 1000}] Table[Min[Flatten[Position[t, Prime[j]]]], {j, 1, 200}] %Y A093773 Cf. A000720, A002321, A008682, A059071, A088004, A093772. %K A093773 nonn %O A093773 1,1 %A A093773 _Labos Elemer_, Apr 28 2004