cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093792 Hook products of all partitions of 13.

This page as a plain text file.
%I A093792 #14 Sep 23 2024 14:14:26
%S A093792 290304,290304,302400,302400,362880,362880,388800,414720,414720,
%T A093792 483840,483840,518400,518400,518400,518400,537600,537600,544320,
%U A093792 544320,604800,604800,665280,665280,691200,691200,725760,725760,725760,798336,798336,844800,844800,907200
%N A093792 Hook products of all partitions of 13.
%H A093792 Jean-François Alcover, <a href="/A093792/b093792.txt">Table of n, a(n) for n = 1..101</a>
%F A093792 a(n) = 13!/A003877(102-n).
%p A093792 H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(13)[q])),q=1..numbpart(13))]);
%t A093792 h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
%t A093792 g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
%t A093792 T[n_] := g[n, n, {}];
%t A093792 Sort[13!/T[13]] (* _Jean-François Alcover_, Sep 22 2024, after _Alois P. Heinz_ in A060240 *)
%Y A093792 Cf. A003877, A060240.
%Y A093792 Row n=13 of A093784.
%K A093792 fini,full,nonn
%O A093792 1,1
%A A093792 _Emeric Deutsch_, May 17 2004