This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093814 #19 Apr 29 2023 23:02:02 %S A093814 1,5,2,0,3,4,6,9,0,1,0,6,6,2,8,0,8,0,5,6,1,1,9,4,0,1,4,6,7,5,4,9,7,5, %T A093814 6,2,7,0,3,6,1,0,7,4,1,8,7,7,9,0,4,6,3,3,7,5,2,8,3,6,3,8,6,8,5,2,6,7, %U A093814 3,4,6,2,3,9,3,0,0,5,8,3,0,4,3,1,4,8,4,1,5,3,7,2,5,9,5,6,5,5,7,7,0,7,1,6,5,8 %N A093814 Decimal expansion of sqrt(2*Pi/e). %C A093814 Arises in an asymptotic formula for f(x) = Sum_{k>0} (x/k)^k as x->oo: f(x) is asymptotic to sqrt(2*Pi/e)*sqrt(x)*e^(x/e). %H A093814 G. C. Greubel, <a href="/A093814/b093814.txt">Table of n, a(n) for n = 1..10000</a> %F A093814 sqrt(2*Pi/e) = 1.52034690106628080561194... %t A093814 RealDigits[Sqrt[2*Pi/E],10,120][[1]] (* _Harvey P. Dale_, Mar 05 2015 *) %o A093814 (PARI) default(realprecision, 100); sqrt(2*Pi/exp(1)) \\ _G. C. Greubel_, Oct 01 2018 %o A093814 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2*Pi(R)/Exp(1)); // _G. C. Greubel_, Oct 01 2018 %Y A093814 Equals A019727*A092605. - _Michel Marcus_, Oct 02 2018 %K A093814 cons,nonn %O A093814 1,2 %A A093814 _Benoit Cloitre_, May 20 2004