This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093826 #20 May 05 2021 13:41:07 %S A093826 5,1,16,12,49,58,60,110,209,117,240,430,255,1423,921,980,511,1847, %T A093826 3737,3692,3998,7265,15267,15651,15722,31457,32659,64248,57927,64448, %U A093826 64171,250068,129013,501578,256159,510732,980930,979883 %N A093826 In binary representation: least number, k, which occurs n times in its factorial. %C A093826 Overlapping occurrences are counted. - _Michael S. Branicky_, May 01 2021 %C A093826 a(47) = 262143. - _Michael S. Branicky_, May 02 2021 %e A093826 12!_b = 11100100011001111110000000000 and 12_b = 1100 and the later string appears thrice in the former string. %t A093826 f[n_] := ToString[ FromDigits[ IntegerDigits[n, 2]]]; g[n_] := Length[ StringPosition[ f[n! ], f[n]]]; a = Table[0, {30}]; Do[ b = g[n]; If[a[[b + 1]] == 0, a[[b + 1]] = n], {n, 29000}]; a %o A093826 (Python) %o A093826 from itertools import count, takewhile %o A093826 def count_overlaps(subs, s): %o A093826 c = i = 0 %o A093826 while i != -1: %o A093826 i = s.find(subs, i) %o A093826 if i != -1: c += 1; i += 1 %o A093826 return c %o A093826 def afind(limit): %o A093826 kfact, adict = 1, dict() %o A093826 for k in range(1, limit+1): %o A093826 kb, kfact = bin(k)[2:], kfact * k %o A093826 kfactb = bin(kfact)[2:] %o A093826 n = count_overlaps(kb, kfactb) %o A093826 if n not in adict: adict[n] = k %o A093826 return [adict[n] for n in takewhile(lambda i: i in adict, count(0))] %o A093826 print(afind(16000)) # _Michael S. Branicky_, May 01 2021 %Y A093826 Cf. A093685. %K A093826 nonn,base %O A093826 0,1 %A A093826 _Robert G. Wilson v_ and _Reinhard Zumkeller_, Apr 16 2004 %E A093826 a(25)-a(37) from _Michael S. Branicky_, May 03 2021