cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093846 Triangle read by rows: T(n, k) = 10^(n-1) - 1 + k*floor(9*10^(n-1)/n), for 1 <= k <= n.

This page as a plain text file.
%I A093846 #22 Sep 08 2022 08:45:13
%S A093846 9,54,99,399,699,999,3249,5499,7749,9999,27999,45999,63999,81999,
%T A093846 99999,249999,399999,549999,699999,849999,999999,2285713,3571427,
%U A093846 4857141,6142855,7428569,8714283,9999997,21249999,32499999,43749999,54999999,66249999,77499999,88749999,99999999
%N A093846 Triangle read by rows: T(n, k) = 10^(n-1) - 1 + k*floor(9*10^(n-1)/n), for 1 <= k <= n.
%C A093846 10^(n-1)-1 and the n-th row are n+1 numbers in arithmetic progression and the common difference is the largest such that a(n, n) has n digits. This common difference equals A061772(n).
%H A093846 G. C. Greubel, <a href="/A093846/b093846.txt">Rows n = 1..100 of triangle, flattened</a>
%e A093846 Triangle begins:
%e A093846      9;
%e A093846     54,   99;
%e A093846    399,  699,  999;
%e A093846   3249, 5499, 7749, 9999;
%e A093846   ...
%p A093846 A093846 := proc(n,k) RETURN (10^(n-1)-1+k*floor(9*(10^(n-1)/n))); end; for n from 1 to 10 do for k from 1 to n do printf("%d,",A093846(n,k)); od; od; # _R. J. Mathar_, Jun 23 2006
%t A093846 Table[# -1 +k Floor[9 #/n] &[10^(n-1)], {n, 8}, {k, n}]//Flatten (* _Michael De Vlieger_, Jul 18 2016 *)
%o A093846 (PARI) {T(n,k) = 10^(n-1) -1 +k*floor(9*10^(n-1)/n)}; \\ _G. C. Greubel_, Mar 22 2019
%o A093846 (Magma) [[10^(n-1) -1 +k*Floor(9*10^(n-1)/n): k in [1..n]]: n in [1..8]]; // _G. C. Greubel_, Mar 22 2019
%o A093846 (Sage) [[10^(n-1) -1 +k*floor(9*10^(n-1)/n) for k in (1..n)] for n in (1..8)] # _G. C. Greubel_, Mar 22 2019
%Y A093846 Cf. A061772, A093847, A093849, A093850.
%K A093846 base,easy,less,nonn,tabl
%O A093846 1,1
%A A093846 _Amarnath Murthy_, Apr 18 2004
%E A093846 Corrected and extended by _R. J. Mathar_, Jun 23 2006
%E A093846 Edited by _David Wasserman_, Mar 26 2007