cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.

This page as a plain text file.
%I A093883 #46 Nov 21 2023 04:33:06
%S A093883 1,3,60,12600,38102400,2112397056000,2609908810629120000,
%T A093883 84645606509847871488000000,82967862872337478796810649600000000,
%U A093883 2781259372192376861719959017613164544000000000
%N A093883 Product of all possible sums of two distinct numbers taken from among first n natural numbers.
%C A093883 From _Clark Kimberling_, Jan 02 2013: (Start)
%C A093883 Each term divides its successor, as in A006963, and by the corresponding superfactorial, A000178(n), as in A203469.
%C A093883 Abbreviate "Vandermonde" as V. The V permanent of a set S={s(1),s(2),...,s(n)} is a product of sums s(j)+s(k) in analogy to the V determinant as a product of differences s(k)-s(j). Let D(n) and P(n) denote the V determinant and V permanent of S, and E(n) the V determinant of the numbers s(1)^2, s(2)^2, ..., s(n)^2; then P(n) = E(n)/D(n). This is one of many divisibility properties associated with V determinants and permanents. Another is that if S consists of distinct positive integers, then D(n) divides D(n+1) and P(n) divides P(n+1).
%C A093883 Guide to related sequences:
%C A093883 ...
%C A093883 s(n).............. D(n)....... P(n)
%C A093883 n................. A000178.... (this)
%C A093883 n+1............... A000178.... A203470
%C A093883 n+2............... A000178.... A203472
%C A093883 n^2............... A202768.... A203475
%C A093883 2^(n-1)........... A203303.... A203477
%C A093883 2^n-1............. A203305.... A203479
%C A093883 n!................ A203306.... A203482
%C A093883 n(n+1)/2.......... A203309.... A203511
%C A093883 Fibonacci(n+1).... A203311.... A203518
%C A093883 prime(n).......... A080358.... A203521
%C A093883 odd prime(n)...... A203315.... A203524
%C A093883 nonprime(n)....... A203415.... A203527
%C A093883 composite(n)...... A203418.... A203530
%C A093883 2n-1.............. A108400.... A203516
%C A093883 n+floor(n/2)...... A203430
%C A093883 n+floor[(n+1)/2].. A203433
%C A093883 1/n............... A203421
%C A093883 1/(n+1)........... A203422
%C A093883 1/(2n)............ A203424
%C A093883 1/(2n+2).......... A203426
%C A093883 1/(3n)............ A203428
%C A093883 Generalizing, suppose that f(x,y) is a function of two variables and S=(s(1),s(2),...s(n)). The phrase, "Vandermonde sequence using f(x,y) applied to S" means the sequence a(n) whose n-th term is the product f(s(j,k)) : 1<=j<k<=n}, which is the Vandermonde determinant if f(x,y)=y-x and the Vandermonde permanent if f(x,y)=x+y.
%C A093883 ...
%C A093883 If f(x,y) is a (bivariate) cyclotomic polynomial and S is a strictly increasing sequence of positive integers, then a(n) consists of integers, each of which divides its successor. Guide to sequences for which f(x,y) is x^2+xy+y^2 or x^2-xy+y^2 or x^2+y^2:
%C A093883 ...
%C A093883 s(n) ............ x^2+xy+y^2.. x^2-xy+y^2.. x^2+y^2
%C A093883 n ............... A203012..... A203312..... A203475
%C A093883 n+1 ............. A203581..... A203583..... A203585
%C A093883 2n-1 ............ A203514..... A203587..... A203589
%C A093883 n^2 ............. A203673..... A203675..... A203677
%C A093883 2^(n-1) ......... A203679..... A203681..... A203683
%C A093883 n! .............. A203685..... A203687..... A203689
%C A093883 n(n+1)/2 ........ A203691..... A203693..... A203695
%C A093883 Fibonacci(n) .... A203742..... A203744..... A203746
%C A093883 Fibonacci(n+1) .. A203697..... A203699..... A203701
%C A093883 prime(n) ........ A203703..... A203705..... A203707
%C A093883 floor(n/2) ...... A203748..... A203752..... A203773
%C A093883 floor((n+1)/2) .. A203759..... A203763..... A203766
%C A093883 For f(x,y)=x^4+y^4, see A203755 and A203770. (End)
%D A093883 Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octagon Mathematical Magazine, Vol. 8, No. 2, October 2000.
%D A093883 Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal, Vol. 11, No. 1-2-3 Spring 2000.
%H A093883 T. D. Noe, <a href="/A093883/b093883.txt">Table of n, a(n) for n = 1..20</a>
%F A093883 Partial products of A006963: a(n) = Product((2*i-1)!/i!, i=1..n). - _Vladeta Jovovic_, May 27 2004
%F A093883 G.f.: G(0)/(2*x) -1/x, where G(k)= 1  + 1/(1 - 1/(1 + 1/((2*k+1)!/(k+1)!)/x/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 15 2013
%F A093883 a(n) ~ sqrt(A/Pi) * 2^(n^2 + n/2 - 7/24) * exp(-3*n^2/4 + n/2 - 1/24) * n^(n^2/2 - n/2 - 11/24), where A is the Glaisher-Kinkelin constant A074962. - _Vaclav Kotesovec_, Jan 26 2019
%e A093883 a(4) = (1+2)*(1+3)*(1+4)*(2+3)*(2+4)*(3+4) = 12600.
%p A093883 a:= n-> mul(mul(i+j, i=1..j-1), j=2..n):
%p A093883 seq(a(n), n=1..12);  # _Alois P. Heinz_, Jul 23 2017
%t A093883 f[n_] := Product[(j + k), {k, 2, n}, {j, 1, k - 1}]; Array[f, 10] (* _Robert G. Wilson v_, Jan 08 2013 *)
%o A093883 (PARI) A093883(n)=prod(i=1,n,(2*i-1)!/i!)  \\ _M. F. Hasler_, Nov 02 2012
%Y A093883 Cf. A006963, A093884, A203469.
%K A093883 nonn
%O A093883 1,2
%A A093883 _Amarnath Murthy_, Apr 22 2004
%E A093883 More terms from _Vladeta Jovovic_, May 27 2004