This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A093921 #10 Aug 02 2014 06:17:47 %S A093921 1,1,1,2,1,2,1,1,2,2,1,2,2,2,2,1,1,2,2,2,1,1,2,2,1,2,2,2,1,2,1,1,2,2, %T A093921 2,2,2,2,2,2,2,2,1,1,2,2,1,2,2,2,1,2,2,2,2,1,1,2,2,2,1,1,2,2,1,2,2,2, %U A093921 2,2,2,2,2,2,2,2,1,2,2,2,1,2,1,1,2,2,2,1,1,2,2,1,2,2,2,2,2,2,2,2 %N A093921 a(1) = 1; for n > 1, a(n) = curling number of (b(1),...,b(n-1)), where b() = Kolakoski sequence A000002. %C A093921 The curling number of a finite string S = (s(1),...,s(n)) is the largest integer k such that S can be written as xy^k for strings x and y (where y has positive length). %H A093921 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), #07.1.2. %H A093921 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence [<a href="http://neilsloane.com/doc/gijs.pdf">pdf</a>, <a href="http://neilsloane.com/doc/gijs.ps">ps</a>]. %H A093921 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %Y A093921 Cf. A090822, A000002, A093914. %K A093921 nonn %O A093921 1,4 %A A093921 _N. J. A. Sloane_, May 26 2004